综述与进展

芳烃三氟甲基断裂单碳氟键的反应研究进展

  • 安辛妮 ,
  • 冯璋 ,
  • 黄林 ,
  • 杨义 ,
  • 刘正立
展开
  • a 四川轻化工大学化学与环境工程学院 四川自贡 643000
    b 重庆大学药学院 重庆 401331

收稿日期: 2021-10-25

  修回日期: 2021-11-30

  网络出版日期: 2021-12-08

基金资助

国家自然科学基金(21801029); 重庆博士后科学基金(cstc2019jcyj-bshx0057); 中国博士后科学基金(2020M673121); 四川省教育厅(18CZ0024); 钒钛资源综合利用四川省重点实验室(2018FTSZ03); 大学生创新创业训练计划(S202010622050)

Recent Advances in the Single C—F Bond Cleavage Reactions of Trifluoromethylarenes

  • Xinni An ,
  • Zhang Feng ,
  • Lin Huang ,
  • Yi Yang ,
  • Zhengli Liu
Expand
  • a College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000
    b School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331
* Corresponding authors. E-mail: ;

Received date: 2021-10-25

  Revised date: 2021-11-30

  Online published: 2021-12-08

Supported by

National Natural Science Foundation of China(21801029); Chongqing Postdoctoral Science Foundation(cstc2019jcyj-bshx0057); China Postdoctoral Science Foundation(2020M673121); Education Department of Sichuan Province(18CZ0024); Key Laboratory of Vanadium and Titanium of Sichuan Province(2018FTSZ03); College Students’ Innovation and Entrepreneurship Training Program(S202010622050)

摘要

芳烃三氟甲基化合物价廉易得, 通过对其C(sp3)—F键进行选择性切断是合成含偕二氟基团医药中间体的重要途径. 然而, 该转化中面临着巨大挑战, 如C(sp3)—F键难以活化, 以及如何实现选择性脱单氟键等问题. 近年来该领域发展迅速, 取得了一系列重要的研究成果. 如通过对三氟甲基的转化, 开发出了构建偕二氟烷基基团的简洁而高效的方法,其中涉及二氟烷基自由基或二氟甲基碳阳离子中间体. 根据ArCF3选择性切断单C(sp3)—F键的策略进行分类, 对该领域最新研究进展进行了概述.

本文引用格式

安辛妮 , 冯璋 , 黄林 , 杨义 , 刘正立 . 芳烃三氟甲基断裂单碳氟键的反应研究进展[J]. 有机化学, 2021 , 41(12) : 4554 -4564 . DOI: 10.6023/cjoc202110037

Abstract

Trifluoromethylarene compounds are readily available, and the highly selective cleavage of one C(sp3)—F bond in trifluoromethyl group is an important strategy to access pharmaceutical molecules containing the gem-difluoro groups. However, there are still some challenges in this field, such as the difficulty in activating the C(sp3)—F bond and the highly selective cleavage of the single C(sp3)—F bond. In recent years, efficient methods for the construction of gem-difluoro groups have been developed through the transformation of trifluoromethyl group, in which difluoroalkyl radicals or difluoromethyl carbocation intermediates are alway involved. The recent research progress in this field is summarized based on the cleavage strategies of trifluoromethyl group.

参考文献

[1]
(a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
[1]
(b) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931.
[2]
Levin, M. D.; Chen, T. Q.; Neubig, M. E.; Hong, C. M.; Theulier, C. A. Kobylianskii, I. J.; Janabi, M.; O'Neil, J. P.; Toste, F. D. Science 2017, 356, 1272.
[3]
(a) Middleton, W. J. J. Org. Chem. 1975, 40, 574.
[3]
(b) Taguchi, T.; Kitagawa, O.; Morikawa, T.; Nishiwaki, T.; Uehara, H.; Endo, H.; Kobayashi, Y. Tetrahedron Lett. 1986, 27, 6103.
[3]
(c) Huang, X.-T.; Long, Z.-Y.; Chen, Q.-Y. J. Fluorine Chem. 2001, 111, 107.
[4]
(a) Li, G.; Wang, T.; Fei, F.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Angew. Chem., Int. Ed. 2016, 55, 3491.
[4]
(b) Li, C.; Cao, Y.-X.; Wang, R.; Wang, Y.-N.; Lan, Q.; Wang, X.-S. Nat. Commun. 2018, 9, 4951.
[5]
Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
[6]
(a) Fujita, T.; Fuchibe, K.; Ichikawa, J. Angew. Chem., Int. Ed. 2019, 58, 390.
[6]
(b) Young, R. D.; Gupta, R.; Jaiswal, A. K.; Mandal, D. Synlett 2020, 31, 933.
[7]
(a) Britton, R.; Gouverneur, V.; Lin, J.-H.; Meanwell, M.; Ni, C.; Pupo, G.; Xiao, J.-C.; Hu, J. Nat. Rev. Methods Primers 2021, 1, 47.
[7]
(b) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815. (in Chinese)
[7]
( 卿凤翎, 有机化学, 2012, 32, 815.)
[8]
(a) Iwamoto, H.; Imiya, H.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2020, 142, 19360.
[8]
(b) Doi, R.; Kikushima, K.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2015, 137, 3276.
[8]
(c) Dang, H.; Whittaker, A. M.; Lalic, G. Chem. Sci. 2016, 7, 505.
[9]
(a) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[9]
(b) Hintermann, L.; Läng, F.; Maire, P.; Togni, A. Eur. J. Inorg. Chem. 2006, 2006, 1397.
[9]
(c) Hazari, A.; Gouverneur, V.; Brown, J. M. Angew. Chem., Int. Ed. 2009, 48, 1296.
[9]
(d) Pigeon, X.; Bergeron, M.; Barabe, F.; Dube, P.; Frost, H. N.; Paquin, J. F. Angew. Chem., Int. Ed. 2010, 49, 1123.
[9]
(e) Butcher, T. W.; Yang, J. L.; Amberg, W. M.; Watkins, N. B.; Wilkinson, N. D.; Hartwig, J. F. Nature 2020, 583, 548.
[10]
Yi, R.; He, W. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
[10]
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
[11]
(a) Mattay, J.; Runsink, J.; Rumbach, T.; Ly, C.; Gersdorf, J. J. Am. Chem. Soc. 1985, 107, 2558.
[11]
(b) Mako, M.; Morita, T.; Torihara, T.; Nakadaira, Y. J. Chem. Soc. Chem. Commun. 1993, 678.
[11]
(c) Nakadaira, Y.; Kawasaki, M.; Zhou, D. Y.; Kako, M. Main Group Met. Chem. 1994, 17, 553.
[12]
(a) Laot, Y.; Petit, L.; Zard, S. Z. Org. Lett. 2010, 12, 3426.
[12]
(b) Ashley, M. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 18310.
[12]
(c) Simur, T. T.; Ye, T.; Yu, Y.-J.; Zhang, F.-L.; Wang, Y.-F. Chin. Chem. Lett. 2021, DOI: 10.1016/j.cclet.2021.08.043.
[13]
(a) Mezhenkova, T. V.; Karpov, V. M.; Zonov, Y. V. J. Fluorine Chem. 2018, 207, 59.
[13]
(b) Pozdnyakovich, Y. V.; Shteingarts, V. D. J. Fluorine Chem. 1974, 4, 297.
[13]
(c) Mattay, J.; Runsink, J.; Rumbach, T.; Ly, C.; Gersdorf, J. J. Am. Chem. Soc. 1985, 107, 2557.
[13]
(d) Uneyama, K.; Amii, H.; Hatamoto, Y.; Seo, M. J. Org. Chem. 2001, 66, 7216.
[13]
(e) Montauzon, D. D.; Clavel, P.; Lessene, G.; Biran, C.; Bordeau, M.; Roques, N.; Dominique, T. J. Fluorine Chem. 2001, 107, 301.
[13]
(f) Senboku, H.; Yamauchi, Y.; Fukuhara, T.; Hara, S. Synlett 2008, 438.
[13]
(g) Utsumi, S.; Katagiri, T.; Uneyama, K. Tetrahedron 2012, 68, 1085.
[14]
Chen, K.; Berg, N.; Gschwind, R.; König, B. J. Am. Chem. Soc. 2017, 139, 18444.
[15]
Yuan, X.; Zhuang, K.-Q.; Cui, Y.-S.; Qin, L.-Z.; Sun, Q.; Duan, X.; Chen, L.; Zhu, N.; Li, G.; Qiu, J.-K.; Guo, K. Commun. Chem. 2020, 3, 98.
[16]
Yan, S.-S.; Liu, S.-H.; Chen, L.; Bo, Z.-Y.; Jing, K.; Gao, T.-Y.; Yu, B.; Lan, Y.; Luo, S.-P.; Yu, D.-G. Chem 2021, 7, 3099.
[17]
Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2018, 140, 163.
[18]
Kang, X.; Han, X.; Yuan, C.; Cheng, C.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2020, 142, 16346.
[19]
Vogt, D. B.; Seath, C. P.; Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2019, 141, 13203.
[20]
Luo, C.; Bandar, J. S. J. Am. Chem. Soc. 2019, 141, 14120.
[21]
(a) Yu, Y.-J.; Zhang, F.-L.; Peng, T.-Y.; Wang, C.-L.; Cheng, J.; Chen, C.; Houk, K. N.; Wang, Y.-F. Science 2021, 371, 1232.
[21]
(b) Doi, R.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2016, 55, 341.
[21]
(c) Box, J. R.; Atkins, A. P.; Lennox, A. J. J. Chem. Sci. 2021, 12, 10252.
[22]
Luo, Y. C.; Tong, F. F.; Zhang, Y.; He, C. Y.; Zhang, X. J. Am. Chem. Soc. 2021, 143, 13971.
[23]
Hisano, N.; Kimura, D.; Mori, K. Chem. Lett. 2019, 48, 771.
[24]
Yoshida, S.; Shimomori, K.; Kim, Y.; Hosoya, T. Angew. Chem., Int. Ed. 2016, 55, 10406.
[25]
Idogawa, R.; Kim, Y.; Shimomori, K.; Hosoya, T.; Yoshida, S. Org. Lett. 2020, 22, 9292.
[26]
Kim, Y.; Kanemoto, K.; Shimomori, K.; Hosoya, T.; Yoshida, S. Chem.-Eur. J. 2020, 26, 6136.
[27]
Mandal, D.; Gupta, R.; Jaiswal, A. K.; Young, R. D. J. Am. Chem. Soc. 2020, 142, 2572.
[28]
Sap, J. B. I.; Straathof, N. J. W.; Knauber, T.; Meyer, C. F.; Medebielle, M.; Buglioni, L.; Genicot, C.; Trabanco, A. A.; Noel, T.; Am Ende, C. W.; Gouverneur, V. J. Am. Chem. Soc. 2020, 142, 9181.
[29]
Iwamoto, H.; Imiya, H.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2020, 142, 19360.
文章导航

/