芳烃三氟甲基断裂单碳氟键的反应研究进展
收稿日期: 2021-10-25
修回日期: 2021-11-30
网络出版日期: 2021-12-08
基金资助
国家自然科学基金(21801029); 重庆博士后科学基金(cstc2019jcyj-bshx0057); 中国博士后科学基金(2020M673121); 四川省教育厅(18CZ0024); 钒钛资源综合利用四川省重点实验室(2018FTSZ03); 大学生创新创业训练计划(S202010622050)
Recent Advances in the Single C—F Bond Cleavage Reactions of Trifluoromethylarenes
Received date: 2021-10-25
Revised date: 2021-11-30
Online published: 2021-12-08
Supported by
National Natural Science Foundation of China(21801029); Chongqing Postdoctoral Science Foundation(cstc2019jcyj-bshx0057); China Postdoctoral Science Foundation(2020M673121); Education Department of Sichuan Province(18CZ0024); Key Laboratory of Vanadium and Titanium of Sichuan Province(2018FTSZ03); College Students’ Innovation and Entrepreneurship Training Program(S202010622050)
安辛妮 , 冯璋 , 黄林 , 杨义 , 刘正立 . 芳烃三氟甲基断裂单碳氟键的反应研究进展[J]. 有机化学, 2021 , 41(12) : 4554 -4564 . DOI: 10.6023/cjoc202110037
Trifluoromethylarene compounds are readily available, and the highly selective cleavage of one C(sp3)—F bond in trifluoromethyl group is an important strategy to access pharmaceutical molecules containing the gem-difluoro groups. However, there are still some challenges in this field, such as the difficulty in activating the C(sp3)—F bond and the highly selective cleavage of the single C(sp3)—F bond. In recent years, efficient methods for the construction of gem-difluoro groups have been developed through the transformation of trifluoromethyl group, in which difluoroalkyl radicals or difluoromethyl carbocation intermediates are alway involved. The recent research progress in this field is summarized based on the cleavage strategies of trifluoromethyl group.
[1] | (a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119. |
[1] | (b) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931. |
[2] | Levin, M. D.; Chen, T. Q.; Neubig, M. E.; Hong, C. M.; Theulier, C. A. Kobylianskii, I. J.; Janabi, M.; O'Neil, J. P.; Toste, F. D. Science 2017, 356, 1272. |
[3] | (a) Middleton, W. J. J. Org. Chem. 1975, 40, 574. |
[3] | (b) Taguchi, T.; Kitagawa, O.; Morikawa, T.; Nishiwaki, T.; Uehara, H.; Endo, H.; Kobayashi, Y. Tetrahedron Lett. 1986, 27, 6103. |
[3] | (c) Huang, X.-T.; Long, Z.-Y.; Chen, Q.-Y. J. Fluorine Chem. 2001, 111, 107. |
[4] | (a) Li, G.; Wang, T.; Fei, F.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Angew. Chem., Int. Ed. 2016, 55, 3491. |
[4] | (b) Li, C.; Cao, Y.-X.; Wang, R.; Wang, Y.-N.; Lan, Q.; Wang, X.-S. Nat. Commun. 2018, 9, 4951. |
[5] | Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264. |
[6] | (a) Fujita, T.; Fuchibe, K.; Ichikawa, J. Angew. Chem., Int. Ed. 2019, 58, 390. |
[6] | (b) Young, R. D.; Gupta, R.; Jaiswal, A. K.; Mandal, D. Synlett 2020, 31, 933. |
[7] | (a) Britton, R.; Gouverneur, V.; Lin, J.-H.; Meanwell, M.; Ni, C.; Pupo, G.; Xiao, J.-C.; Hu, J. Nat. Rev. Methods Primers 2021, 1, 47. |
[7] | (b) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815. (in Chinese) |
[7] | ( 卿凤翎, 有机化学, 2012, 32, 815.) |
[8] | (a) Iwamoto, H.; Imiya, H.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2020, 142, 19360. |
[8] | (b) Doi, R.; Kikushima, K.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2015, 137, 3276. |
[8] | (c) Dang, H.; Whittaker, A. M.; Lalic, G. Chem. Sci. 2016, 7, 505. |
[9] | (a) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308. |
[9] | (b) Hintermann, L.; Läng, F.; Maire, P.; Togni, A. Eur. J. Inorg. Chem. 2006, 2006, 1397. |
[9] | (c) Hazari, A.; Gouverneur, V.; Brown, J. M. Angew. Chem., Int. Ed. 2009, 48, 1296. |
[9] | (d) Pigeon, X.; Bergeron, M.; Barabe, F.; Dube, P.; Frost, H. N.; Paquin, J. F. Angew. Chem., Int. Ed. 2010, 49, 1123. |
[9] | (e) Butcher, T. W.; Yang, J. L.; Amberg, W. M.; Watkins, N. B.; Wilkinson, N. D.; Hartwig, J. F. Nature 2020, 583, 548. |
[10] | Yi, R.; He, W. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese) |
[10] | ( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.) |
[11] | (a) Mattay, J.; Runsink, J.; Rumbach, T.; Ly, C.; Gersdorf, J. J. Am. Chem. Soc. 1985, 107, 2558. |
[11] | (b) Mako, M.; Morita, T.; Torihara, T.; Nakadaira, Y. J. Chem. Soc. Chem. Commun. 1993, 678. |
[11] | (c) Nakadaira, Y.; Kawasaki, M.; Zhou, D. Y.; Kako, M. Main Group Met. Chem. 1994, 17, 553. |
[12] | (a) Laot, Y.; Petit, L.; Zard, S. Z. Org. Lett. 2010, 12, 3426. |
[12] | (b) Ashley, M. A.; Rovis, T. J. Am. Chem. Soc. 2020, 142, 18310. |
[12] | (c) Simur, T. T.; Ye, T.; Yu, Y.-J.; Zhang, F.-L.; Wang, Y.-F. Chin. Chem. Lett. 2021, DOI: 10.1016/j.cclet.2021.08.043. |
[13] | (a) Mezhenkova, T. V.; Karpov, V. M.; Zonov, Y. V. J. Fluorine Chem. 2018, 207, 59. |
[13] | (b) Pozdnyakovich, Y. V.; Shteingarts, V. D. J. Fluorine Chem. 1974, 4, 297. |
[13] | (c) Mattay, J.; Runsink, J.; Rumbach, T.; Ly, C.; Gersdorf, J. J. Am. Chem. Soc. 1985, 107, 2557. |
[13] | (d) Uneyama, K.; Amii, H.; Hatamoto, Y.; Seo, M. J. Org. Chem. 2001, 66, 7216. |
[13] | (e) Montauzon, D. D.; Clavel, P.; Lessene, G.; Biran, C.; Bordeau, M.; Roques, N.; Dominique, T. J. Fluorine Chem. 2001, 107, 301. |
[13] | (f) Senboku, H.; Yamauchi, Y.; Fukuhara, T.; Hara, S. Synlett 2008, 438. |
[13] | (g) Utsumi, S.; Katagiri, T.; Uneyama, K. Tetrahedron 2012, 68, 1085. |
[14] | Chen, K.; Berg, N.; Gschwind, R.; König, B. J. Am. Chem. Soc. 2017, 139, 18444. |
[15] | Yuan, X.; Zhuang, K.-Q.; Cui, Y.-S.; Qin, L.-Z.; Sun, Q.; Duan, X.; Chen, L.; Zhu, N.; Li, G.; Qiu, J.-K.; Guo, K. Commun. Chem. 2020, 3, 98. |
[16] | Yan, S.-S.; Liu, S.-H.; Chen, L.; Bo, Z.-Y.; Jing, K.; Gao, T.-Y.; Yu, B.; Lan, Y.; Luo, S.-P.; Yu, D.-G. Chem 2021, 7, 3099. |
[17] | Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2018, 140, 163. |
[18] | Kang, X.; Han, X.; Yuan, C.; Cheng, C.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2020, 142, 16346. |
[19] | Vogt, D. B.; Seath, C. P.; Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2019, 141, 13203. |
[20] | Luo, C.; Bandar, J. S. J. Am. Chem. Soc. 2019, 141, 14120. |
[21] | (a) Yu, Y.-J.; Zhang, F.-L.; Peng, T.-Y.; Wang, C.-L.; Cheng, J.; Chen, C.; Houk, K. N.; Wang, Y.-F. Science 2021, 371, 1232. |
[21] | (b) Doi, R.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2016, 55, 341. |
[21] | (c) Box, J. R.; Atkins, A. P.; Lennox, A. J. J. Chem. Sci. 2021, 12, 10252. |
[22] | Luo, Y. C.; Tong, F. F.; Zhang, Y.; He, C. Y.; Zhang, X. J. Am. Chem. Soc. 2021, 143, 13971. |
[23] | Hisano, N.; Kimura, D.; Mori, K. Chem. Lett. 2019, 48, 771. |
[24] | Yoshida, S.; Shimomori, K.; Kim, Y.; Hosoya, T. Angew. Chem., Int. Ed. 2016, 55, 10406. |
[25] | Idogawa, R.; Kim, Y.; Shimomori, K.; Hosoya, T.; Yoshida, S. Org. Lett. 2020, 22, 9292. |
[26] | Kim, Y.; Kanemoto, K.; Shimomori, K.; Hosoya, T.; Yoshida, S. Chem.-Eur. J. 2020, 26, 6136. |
[27] | Mandal, D.; Gupta, R.; Jaiswal, A. K.; Young, R. D. J. Am. Chem. Soc. 2020, 142, 2572. |
[28] | Sap, J. B. I.; Straathof, N. J. W.; Knauber, T.; Meyer, C. F.; Medebielle, M.; Buglioni, L.; Genicot, C.; Trabanco, A. A.; Noel, T.; Am Ende, C. W.; Gouverneur, V. J. Am. Chem. Soc. 2020, 142, 9181. |
[29] | Iwamoto, H.; Imiya, H.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2020, 142, 19360. |
/
〈 |
|
〉 |