研究论文

无过渡金属条件下可见光诱导α-重氮酯的氧化合成α-酮酯

  • 赵保丽 ,
  • 杨良凤 ,
  • 程凯 ,
  • 周丽云 ,
  • 万结平
展开
  • a 江西师范大学化学化工学院 南昌 330022
    b 绍兴文理学院 浙江省精细化工与传统工艺绿色替代技术重点实验室 浙江绍兴 312000

收稿日期: 2021-11-12

  修回日期: 2021-12-01

  网络出版日期: 2021-12-08

基金资助

江西省自然科学基金(20202ACBL203006); 浙江省教育厅科研计划(Y202147050)

Visible Light Induced Oxidation of α-Diazo Esters for the Transition Metal-Free Synthesis of α-Keto Esters

  • Baoli Zhao ,
  • Liangfeng Yang ,
  • Kai Cheng ,
  • Liyun Zhou ,
  • Jie-Ping Wan
Expand
  • a College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022
    b Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000
* Corresponding authors. E-mail: ;

Received date: 2021-11-12

  Revised date: 2021-12-01

  Online published: 2021-12-08

Supported by

Natural Science Foundation of Jiangxi Province(20202ACBL203006); Foundation of Zhejiang Educational Committee(Y202147050)

摘要

发展了一例空气氛围下氧气作为无污染氧化剂合成α-酮酯的方法. 以易得的α-重氮酯为起始原料, 该转化在采用曙红Y作为光敏剂的光诱导条件下进行. 反应在室温和空气氛围下操作, 底物兼容性好. 提供了一个绿色、简便合成结构多样的α-酮酯的方法.

本文引用格式

赵保丽 , 杨良凤 , 程凯 , 周丽云 , 万结平 . 无过渡金属条件下可见光诱导α-重氮酯的氧化合成α-酮酯[J]. 有机化学, 2021 , 41(12) : 4732 -4737 . DOI: 10.6023/cjoc202111020

Abstract

Herein, an aerobic oxidation approach for the synthesis of α-keto esters using oxygen as a cheap and pollution-free oxidant has been developed. By using readily available α-diazo esters as starting materials, the transformation was achieved by the inducement of visible light with eosin Y as the light sensitizer. The reactions proceed at room temperature under air atmosphere, tolerating substrates with broad scope, thus providing a green and facile synthetic approach to structurally diverse α-keto esters.

参考文献

[1]
For selected reviews, see: (a) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
[1]
(b) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[1]
(c) Sun, K.; Xiao, F.; Yu, B.; He, W.-M. Chin. J. Catal. 2021, 42, 1921.
[1]
(d) Liu, Q.; Wu, L.-Z. Nat. Chem. Rev. 2017, 4, 359.
[1]
(e) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5139.
[1]
(f) Courant, T.; Masson, G. J. Org. Chem. 2016, 81, 6945.
[1]
(g) Yi, R.-N.; He, W.-M. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
[1]
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
[2]
(a) Ge, L.; Wang, J.-H.; Lei, T.; Cheng, Y.-Y.; Zhou, C.; Chen, Y.-J.; Ye, C.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2021, 23, 8082.
[2]
(b) Bao, P.; Liu, F.; Lü, Y.; Yue, H.; Li, J.-S.; Wei, W. Org. Chem. Front. 2020, 7, 492.
[2]
(c) Xie, L.-Y.; Peng, S.; Yang, L.-H.; Peng, C.; Lin, Y.-W.; Yu, X.; Cao, Z. Green Chem. 2021, 23, 374.
[2]
(d) Gao, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 2243.
[2]
(e) Yuan, W.; Huang, J.; Xu, X.; Wang, L.; Tang, X.-Y. Org. Lett. 2021, 23, 7139.
[2]
(f) Nagae, H.; Sakamoto, K.; Fujiwara, S.; Schindler, T.; Kon, Y.; Sato, K.; Okuda, J.; Mashima, K. Green Chem. 2021, 57, 11169.
[2]
(g) Zhou, K.; Yu, Y.; Lin, Y.-Y.; Li, Y.; Gong, L. Green Chem. 2020, 22, 4597.
[2]
(h) Shi, J.; Wei, W. Chin. J. Org. Chem. 2020, 40, 2170. (in Chinese)
[2]
( 时建伟, 魏伟, 有机化学, 2020, 40, 2170.)
[3]
(a) Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Green Chem. 2019, 21, 1609.
[3]
(b) Li, C.; Mizuno, N.; Murata, K.; Ishii, K.; Suenobu, T.; Yamaguchi, K.; Suzuki, K. Green Chem. 2020, 22, 3896.
[3]
(c) Liu, K.-J.; Deng, J.-H.; Yang, J.; Gong, S.-F.; Lin, Y.-W.; He, J.-Y.; Cao, Z.; He, W.-M. Green Chem. 2020, 22, 433.
[3]
(d) Jin, W.; Liu, C. Chin. J. Org. Chem. 2021, 41, 2148. (in Chinese)
[3]
( 金伟伟, 刘晨江, 有机化学, 2021, 41, 2148.)
[3]
(e) Huang, Y.; Xin, Z.; Yao, W.; Hu, Q.; Li, Z.; Xiao, L.; Yang, B.; Zhang, J. Chem. Commun. 2018, 54, 13587.
[4]
(a) Ma, T.; Hua, J.; Bian, M.; Qin, H.; Lin, X.; Yang, X.; Liu, C.; Yang, Z.; Fang, Z.; Guo, K. Org. Chem. Front. 2022, DOI: 10.1039/D1QO01087E.
[4]
(b) Cao, S.; Zhong, S.; Xin, L.; Wan, J.-P.; Wen, C. ChemCatChem 2015, 7, 1478.
[4]
(c) Xin, H.; Duan, X.-H.; Yang, M.; Zhang, Y.; Guo, L.-N. J. Org. Chem. 2021, 86, 8263.
[4]
(d) Dong, C.-L.; Huang, L.-Q.; Guan, Z.; Huang, C.-S.; He, Y.-H. Adv. Synth. Catal. 2021, 363, 3803.
[5]
(a) Ming, Z.-Y.; Li, K.-R.; Meng, F.-J.; Shi, L.; Jiang, W.-F. Tetrahedron Lett. 2020, 61, 152059.
[5]
(b) Karimi, M.; Sadeghi, S.; Mohebali, H.; Azarkohosh, Z.; Safarifard, V.; Mahjoub, A.; Heydari, A. New Chem. J. 2021, 45, 14024.
[5]
(c) Yu, K.; Zhang, H.; Su, C.; Zhu, Y. Eur. J. Org. Chem. 2020, 1956.
[5]
(d) Zhang, Y.; Zhao, G.; Zhang, Y.; Huang, X. Green Chem. 2014, 16, 3860.
[6]
(a) Qian, L.; Zhang, K.; Wang, Z.; Li, H.; Lu, P.; Wang, Y. J. Org. Chem. 2021, 86, 7955.
[6]
(b) Gui, Q.-W.; Teng, F.; Li, Z.-C.; Xiong, Z.-Y.; Jin, X.-F.; Liu, H.-Y.; Lin, Y.-W.; Cao, Z.; He, W. Chin. Chem. Lett. 2021, 32, 1907.
[6]
(c) Sun, B.; Zhu, R.; Zhuang, X.; Shi, X.; Huang, P.; Yan, Z.; Yu, C.; Jin, C. Org. Lett. 2021, 23, 617.
[6]
(d) Jiang, Y.-Q.; Li, J.; Feng, Z.-W.; Xu, G.-Q.; Shi, X.; Ding, Q.-J.; Li, W.; Ma, C.-H.; Yu, B. Adv. Synth. Catal. 2020, 362, 2609.
[6]
(e) Zhang, Q.-B.; Yuan, P.-F.; Kai, L.-L.; Liu, K.; Ban, Y.-L.; Wang, X.-Y.; Wu, L.-Z. Liu, Q. Org. Lett. 2019, 21, 885.
[7]
(a) Xu, H.; Zhang, Y.-F.; Lang, X. Chin. Chem. Lett. 2020, 31, 1520.
[7]
(b) Huang, Y.; Xie, W.; Luo, Y.; Fan, Q.; Zhu, X.; Liu, S.; Shi, X. Chin. J. Org. Chem. 2020, 40, 1281. (in Chinese)
[7]
( 黄永康, 解文静, 罗永强, 范琪琦, 朱星亮, 刘世领, 施小新, 有机化学, 2020, 40, 1281.)
[7]
(c) He, S.; Chen, X.; Zeng, F.; Lu, P.; Peng, Y.; Qu, L.; Yu, B. Chin. Chem. Lett. 2020, 31, 1863.
[7]
(d) Ban, Y.-L.; Dai, J.-L.; Jin, X.-L.; Zhang, Q.-B.; Liu, Q. Green Chem. 2019, 55, 9701.
[7]
(e) Fu, M.; Ji, X.; Li, Y.; Deng, G.-J.; Huang, H. Green Chem. 2020, 22, 5594.
[7]
(e) Hosseini-Sarvari, M.; Bazyar, Z. ChemistrySelect 2020, 5, 8853.
[7]
(f) Han, A.; Sun, J.; Zhang, H.; Chuah, G.-K.; Jaenicke, S. ChemCatChem 2019, 11, 6425.
[7]
(g) Herrera-Luna, J.; Díaz, D. D.; Abramov, A.; Encinas, S.; Jiménez, Pérez-Ruiz, R. J. Org. Chem. 2021, 23, 2320.
[7]
(h) Peng, X.-J.; He, H.-P.; Liu, Q.; She, K.; Zhang, B.-Q.; Wang, H.-S.; Tang, H.-T.; Pan, Y.-M. Sci. China Chem. 2021, 64, 753.
[8]
(a) Morgan, E. H.; Laurell, C. B. Nature 1963, 197, 921.
[8]
(b) Unger, F. M. Adv. Carbohydr. Chem. Biochem. 1981, 38, 323.
[8]
(c) Thorat, S. S.; Kataria, P.; Kontham, R. Org. Lett. 2018, 20, 872.
[8]
(d) Eftekhari, B; Zirak, M. Chem. Rev. 2015, 115, 151.
[9]
Su, Y.; Zhang, L.; Jiao, N. Org. Lett. 2011, 13, 2168.
[10]
Yu, Q.; Zhang, Y.; Wan, J.-P. Green Chem. 2019, 21, 3436.
[11]
Ni, K.; Meng, L.-G.; Ruan, H.; Wang, L. Chem. Commun. 2019, 55, 8438.
[12]
Xu, C.; Zhang, N.-N.; Li, X.-J.; Ge, Y.-Q.; Diao, P.-H.; Guo, C. Synlett 2018, 29, 1065.
[13]
Roy, S.; Kumar, G.; Chatterjee, I. Org. Lett. 2021, 23, 6709.
[14]
Uygur, M.; Kuhlmann, J. H.; Pérez-Aguilar, M. C.; Piekarski, D. G.; Mancheño, O. G. Green Chem. 2021, 23, 3392.
[15]
Zhang, H.; Guo, T.; Wu, M.; Huo, X.; Tang, S.; Wang, X.; Liu, J. Tetrahedron Lett. 2021, 67, 152878.
[16]
For selected reviews on diazo compound-based synthesis, see: (a) Ciszewski, Ł. W.; Rybicka-Jasin?ska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
[16]
(b) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
[16]
(c) Chen, N.; He, M.; Zhou, T.; Zhu, Y.; Zhang, H.; Peng, S. Synthesis 2021, 53, 611.
[17]
(a) Tian, C.; Wang, Q.; Wang, X.; An, G.; Li, G. J. Org. Chem. 2019, 84, 14241.
[17]
(b) Yang, H.; Tian, C.; Qiu, D.; An, G.; Li, G. Org. Chem. Front. 2019, 6, 2365.
[17]
(c) Tian, H.; Yang, H.; Tian, C.; An, G.; Li, G. Org. Lett. 2020, 22, 7709.
[17]
(d) Shi, T.; Liu, Y.-T.; Wang, S.-S.; Lü, Q.-Y.; Yu, B. Chin. J. Chem. 2022, 40, 97.
[17]
(e) He, S.-Q.; Li, H.-C.; Chen, X.-L.; Krylov, I. B.; Terent'ev, A. O.; Qu, L.-B.; Yu, B. Chin. J. Org. Chem. 2021, 41, 4661. (in Chinese)
[17]
( 贺帅旗, 李昊聪, 陈晓岚, Krylov, I. B.; Terent'ev, A. O.; 屈凌波, 於兵, 有机化学, 2021, 41, 4661.)
[17]
(f) Wang, X.; Zhang, Y.; Sun, K.; Meng, J.; Zhang, B. Chin. J. Org. Chem. 2021, 41, 4588. (in Chinese)
[17]
( 王薪, 张艳, 孙凯, 孟建萍, 张冰, 有机化学, 2021, 41, 4588)
[17]
(g) Cai, B.; Xuan, J. Chin. J. Org. Chem. 2021, 41, 4565. (in Chinese)
[17]
( 蔡宝贵, 宣俊, 有机化学, 2021, 41, 4565.)
[18]
During the preparation of this manuscript. Wei et al. reported similar Eosin Y induced photocatalytic synthesis of α-keto esters: (a) Liu, R.; Liu, Q.; Meng, H.; Ding, H.; Hao, J.; Ji, Z.; Yue, H.; Wei, W. Org. Chem. Front. 2021, 8, 1970.
[18]
For selected other recent references on air-based oxidation, see: (b) Zhuang, W.; Zhang, X.; Huang, Q. Chin. J. Org. Chem. 2021, 41, 529. (in Chinese)
[18]
( 庄伟辉, 张晓凤, 黄秋锋, 有机化学, 2021, 41, 529.)
[18]
(c) Wang, R.; Dong, X.; Zhang, Y.; Wang, B.; Xia, Y.; Abdukader, A.; Xue, F.; Jin, W.; Liu, C. Chem.-Eur. J. 2021, 27, 14931.
[18]
(d) Wang, C.; Yao, Y.; Xie, J.; Wang, J.; Wang, F.; Zhang, J.; Tang, L. Chin. J. Org. Chem. 2021, 41, 370. (in Chinese)
[18]
( 王聪, 姚瑶瑶, 谢珺, 王建塔, 王飞清, 张吉泉, 汤磊, 有机化学, 2021, 41, 370.)
[18]
(e) Tu, Z.; Zhao, B.; Wan, J.-P.; Wang, C.; Liu, Y. Chin. J. Org. Chem. 2021, 41, 4780. (in Chinese)
[18]
( 涂志, 赵保丽, 万结平, 王超莉, 刘云云, 有机化学, 2021, 41, 4780.)
[19]
(a) Jana, S.; Li, F.; Empel, C.; Verspeek, D.; Aseeva, P.; Koenigs, R. M. Chem.-Eur. J. 2020, 26, 2586.
[19]
(b) He, X.-L.; Gao, Y.-J.; Nie, J.; Sun, F. Macromolecues 2021, 54, 3854.
[19]
(c) Eckert, K. E.; Ashfeld, B. L. Org. Lett. 2018, 20, 2315.
[19]
(d) Zhang, Y.; Ye, D.; Shen, L.; Liang, K.-J.; Xia, C.-F. Org. Lett. 2021, 23, 7112.
[19]
(e) Roy, S.; Kumar, G.; Chatterjee, I. Org. Lett. 2021, 23, 6709.
[19]
(f) Son, J. H.; Zhu, J.-S.; Phuan, P. W.; Cil, O.; Teuthorn, A. P.; Ku, C. K.; Lee, S.-J.; Verkman, A. S.; Kurth, M. J. J. Med. Chem. 2017, 60, 2401.
[19]
(g) Tanaka, N.; Tsutsumi, R.; Uraguchi, D.; Ooi, T. Chem. Commun. 2017, 53, 6999.
[19]
(h) Murray, S. A.; Green, J. C.; Tailor, S. B.; Meek, P. S. J. Angew. Chem., Int. Ed. 2016, 55, 9065.
[19]
(i) Kumar, Y.; Jaiswal, Y.; Kumar, A. J. Org. Chem. 2016, 81, 12247.
[19]
(j) Liu, H.-K.; Lei, Y.-F.; Tian, P.-J.; Wang, H.; Zhao, X.; Li, Z.-T.; Zhang, D.-W. J. Mater. Chem. A 2021, 9, 6361.
[19]
(k) Mizota, I.; Tanaka, K.; Shimizu, M. Tetrahedron Lett. 2012, 53, 1847.
文章导航

/