研究论文

三苯基砷/铱催化的非活化一级碳氢键的双硼化反应合成1,1-偕二硼烷

  • 刘文启 ,
  • 沈振陆 ,
  • 徐森苗
展开
  • a 浙江工业大学化学工程学院 杭州 310014
    b 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000

收稿日期: 2021-11-23

  修回日期: 2021-12-08

  网络出版日期: 2021-12-15

基金资助

国家自然科学基金(91956116); 国家自然科学基金(21776260)

Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp3)—H Bonds Enabled by AsPh3/Iridium Catalysis

  • Wenqi Liu ,
  • Zhenlu Shen ,
  • Senmiao Xu
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014
    b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, Lanzhou 730000

Received date: 2021-11-23

  Revised date: 2021-12-08

  Online published: 2021-12-15

Supported by

National Natural Science Foundation of China(91956116); National Natural Science Foundation of China(21776260)

摘要

报道了以吡唑作为导向基, 三苯基砷/铱催化的活化一级碳氢键的双硼化反应. 这一方法能够兼容多种官能团, 能够以中等到良好的收率实现一系列1,1-偕二硼烷类化合物的合成. 同时, 这一方法也能够实现克级规模的反应, 所获得的硼化产物能够实现进一步的转化.

本文引用格式

刘文启 , 沈振陆 , 徐森苗 . 三苯基砷/铱催化的非活化一级碳氢键的双硼化反应合成1,1-偕二硼烷[J]. 有机化学, 2022 , 42(4) : 1101 -1110 . DOI: 10.6023/cjoc202111032

Abstract

The AsPh3/iridium catalyzed diborylation of unactivated primary C(sp3)—H bonds using pyrazoles as directing groups was disclosed. This method could tolerate a variety of functional groups, affording a vast array of 1,1-diboron alkanes in moderate to good yields. The synthetic utility of the current method on a gram-scale reaction for further functionalization was also demonstrated.

参考文献

[1]
(a) Hall, D. T. Boronic Acids, Wiley-VCH, Weinheim, 2011.
[1]
(b) Zou, C.; Niu, C.; Liu, X.; Zhang, C. Chin. J. Org. Chem. 2021, 41, 4240. (in Chinese)
[1]
( 邹辰晨, 牛长浩, 刘新宇, 张淳, 有机化学, 2021, 41, 4240.)
[2]
(a) Wu, C.; Wang, J. Tetrahedron Lett. 2018, 59, 2128.
[2]
(b) Nallagonda, R.; Padala, K.; Masarwa, A. Org. Biomol. Chem. 2018, 16, 1050.
[2]
(c) Jo, W.; Lee, J. H.; Cho, S. H. Chem. Commun. 2021, 57, 4346.
[2]
(d) Zhang, C.; Hu, W.; Morken, J. P. ACS Catal. 2021, 11, 10660.
[3]
(a) Sun, W.; Wang, L.; Xia, C.; Liu, C. Angew. Chem., nt. Ed. 2018, 57, 5501.
[3]
(b) Li, X.; Hall, D. G. Angew. Chem., nt. Ed. 2018, 57, 10304.
[3]
(c) Iacono, C. E.; Stephens, T. C.; Rajan, T. S.; Pattison, G. J. Am. Chem. Soc. 2018, 140, 2036.
[3]
(d) Zheng, P.; Zhai, Y.; Zhao, X.; Xu, T. Chem. Commun. 2018, 54, 13375.
[3]
(e) Gava, R.; Fernández, E. Chem.-Eur. J. 2019, 25, 8013.
[3]
(f) Lee, B.; Chirik, P. J. J. Am. Chem. Soc. 2020, 142, 2429.
[3]
(g) Kuang, Z.; Yang, K.; Zhou, Y.; Song, Q. Chem. Commun. 2020, 56(48), 6469.
[3]
(h) Li, X.; Hall, D. G. J. Am. Chem. Soc. 2020, 142, 9063.
[3]
(i) Zou, L.-H.; Fan, M.; Wang, L.; Liu, C. Chin. Chem. Lett. 2020, 31, 1911.
[4]
(a) Harris, M. R.; Wisniewska, H. M.; Jiao, W.; Wang, X.; Bradow, J. N. Org. Lett. 2018, 20, 2867.
[4]
(b) Murray, S. A.; Luc, E. C. M.; Meek, S. J. Org. Lett. 2018, 20, 469.
[4]
(c) Lee, H.; Lee, Y.; Cho, S. H. Org. Lett. 2019, 21, 5912.
[4]
(d) Kim, J.; Shin, M.; Cho, S. H. ACS Catal. 2019, 9, 8503.
[4]
(e) Kim, J.; Hwang, C.; Kim, Y.; Cho, S. H. Org. Process Res. Dev. 2019, 23, 1663.
[4]
(f) Nishino, S.; Hirano, K.; Miura, M. Org. Lett. 2019, 21, 4759.
[4]
(g) Shin, M.; Kim, M.; Hwang, C.; Lee, H.; Kwon, H.; Park, J.; Lee, E.; Cho, S. H. Org. Lett. 2020, 22, 2476.
[4]
(h) Green, J. C.; Zanghi, J. M.; Meek, S. J. J. Am. Chem. Soc. 2020, 142, 1704.
[4]
(i) Zhang, C.; Wu, X.; Wang, C.; Zhang, C.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 6376.
[4]
(j) Kim, M.; Park, B.; Shin, M.; Kim, S.; Kim, J.; Baik, M.-H.; Cho, S. H. J. Am. Chem. Soc. 2021, 143, 1069.
[4]
(k) Li, X.; Gao, G.; He, S.; Song, Q. Org. Chem. Front. 2021, 8, 4543.
[5]
(a) Namirembe, S.; Gao, C.; Wexler, R. P.; Morken, J. P. Org. Lett. 2019, 21, 4392.
[5]
(b) Kovalenko, M.; Yarmoliuk, D. V.; Serhiichuk, D.; Chernenko, D.; Smyrnov, V.; Breslavskyi, A.; Hryshchuk, O. V.; Kleban, I.; Rassukana, Y.; Tymtsunik, A. V.; Tolmachev, A. A.; Kuchkovska, Y. O.; Grygorenko, O. O. Eur. J. Org. Chem. 2019, 5624.
[5]
(c) Sun, W.; Wang, L.; Hu, Y.; Wu, X.; Xia, C.; Liu, C. Nat. Commun. 2020, 11, 3113.
[6]
Wu, C.; Bao, Z.; Dou, B.; Wang, J. Chem.-Eur. J. 2021, 27, 2294.
[7]
Kumar, N.; Reddy, R. R.; Masarwa, A. Chem.-Eur. J. 2019, 25, 8008.
[8]
(a) Masaki, S.; Michael, S.; Ikuhiro, N.; Katsuhiro, S.; Takuya, K.; Tamejiro, H. Chem. Lett. 2006, 35, 1222.
[8]
(b) Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890.
[8]
(c) Yang, C.-T.; Zhang, Z.-Q.; Tajuddin, H.; Wu, C.-C.; Liang, J.; Liu, J.-H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. Angew. Chem., nt. Ed. 2012, 51, 528.
[8]
(d) Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 6139.
[9]
(a) Abu Ali, H.; Goldberg, I.; Kaufmann, D.; Burmeister, C.; Srebnik, M. Organometallics 2002, 21, 1870.
[9]
(b) Li, H.; Shangguan, X.; Zhang, Z.; Huang, S.; Zhang, Y.; Wang, J. Org. Lett. 2014, 16, 448.
[9]
(c) Wommack, A. J.; Kingsbury, J. S. Tetrahedron Lett. 2014, 55, 3163.
[9]
(d) Cuenca, A. B.; Cid, J.; García-López, D.; Carbó, J. J.; Fernández, E. Org. Biomol. Chem. 2015, 13, 9659.
[10]
Eichhorn, A. F.; Kuehn, L.; Marder, T. B.; Radius, U. Chem. Commun. 2017, 53, 11694.
[11]
Zhao, H.; Tong, M.; Wang, H.; Xu, S. Org. Biomol. Chem. 2017, 15, 3418.
[12]
(a) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
[12]
(b) He, Z.; Zhu, Q.; Hu, X.; Wang, L.; Xia, C.; Liu, C. Org. Chem. Front. 2019, 6, 900.
[12]
(c) He, Z.; Fan, M.; Xu, J.; Hu, Y.; Wang, L.; Wu, X.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2019, 39, 3438. (in Chinese)
[12]
( 何泽瑜, 范敏, 徐佳能, 胡越, 王露, 吴旭东, 夏春谷, 刘超, 有机化学, 2019, 39, 3438.)
[12]
(d) Li, J.; Wang, H.; Qiu, Z.; Huang, C.-Y.; Li, C.-J. J. Am. Chem. Soc. 2020, 142, 13011.
[13]
(a) Li, L.; Gong, T.; Lu, X.; Xiao, B.; Fu, Y. Angew. Chem. Int. Ed. 2018, 57, 12935.
[13]
(b) Teo, W. J.; Ge, S. Angew. Chem. Int. Ed. 2018, 57, 1654.
[13]
(c) Wang, X.; Cui, X.; Li, S.; Wang, Y.; Xia, C.; Jiao, H.; Wu, L. Angew. Chem. Int. Ed. 2020, 59, 13608.
[13]
(d) Jin. S.; Liu, K.; Wang, S.; Song, Q. J. Am. Chem. Soc. 2021, 143, 13124.
[14]
(a) Zweifel, G.; Arzoumanian, H. J. Am. Chem. Soc. 1967, 89, 291.
[14]
(b) Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 91, 4306.
[14]
(c) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc. 1979, 101, 96.
[14]
(d) Soundararajan, R.; Matteson, D. S. Organometallics 1995, 14, 4157.
[14]
(e) Endo, K.; Hirokami, M.; Shibata, T. Synlett 2009, 1331.
[14]
(f) Lee, S.; Li, D.; Yun, J. Chem.-Asian J. 2014, 9, 2440.
[14]
(f) Zuo, Z.; Huang, Z. Org. Chem. Front. 2016, 3, 434.
[14]
(g) Krautwald, S.; Bezdek, M. J.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 3868.
[14]
(h) Gao, G.; Yan, J.; Yang, K.; Chen, F.; Song, Q. Green Chem. 2017, 19, 3997.
[14]
(i) Gao, G.; Kuang, Z.; Song, Q. Org. Chem. Front. 2018, 5, 2249.
[14]
(j) Docherty, J. H.; Nicholson, K.; Dominey, A. P.; Thomas, S. P. ACS Catal. 2020, 10, 4686.
[15]
(a) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894.
[15]
(b) Feng, X.; Jeon, H.; Yun, J. Angew. Chem. Int. Ed. 2013, 52, 3989.
[15]
(c) Nguyen, P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke, J. M.; Howard, J. A. K.; Marder, T. B. J. Organometallic Chem. 2002, 652, 77.
[15]
(d) Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 16140.
[15]
(e) Scheuermann, M. L.; Johnson, E. J.; Chirik, P. J. Org. Lett. 2015, 17, 2716.
[16]
(a) Hu, J.; Zhao, Y.; Shi, Z. Nat. Catal. 2018, 1, 860.
[16]
(b) Zhang, L.; Si, X.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2020, 142, 10485.
[16]
(c) Hu, M.; Ge, S. Nat. Commun. 2020, 11, 765.
[16]
(d) Xu, J.-X.; Wu, F.-P.; Wu, X.-F. Catal. Commun. 2021, 149, 106205.
[17]
Cho, S. H.; Hartwig, J. F. Chem. Sci. 2014, 5, 694.
[18]
Palmer, W. N.; Obligacion, J. V.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 766.
[19]
Palmer, W. N.; Zarate, C.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 2589.
[20]
Yamamoto, T.; Ishibashi, A.; Suginome, M. Org. Lett. 2019, 21, 6235.
[21]
(a) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
[21]
(b) Ros, A.; Fernandez, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
[21]
(c) Kuroda, Y.; Nakao, Y. Chem. Lett. 2019, 48, 1092.
[21]
(d) Wright, J. S.; Scott, P. J. H.; Steel, P. G. Angew. Chem. Int. Ed. 2021, 60, 2796.
[21]
(e) Zou, X.; Xu, S. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese)
[21]
( 邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.)
[22]
(a) Liskey, C. W.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 12422.
[22]
(b) Kawamorita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134, 12924.
[22]
(c) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2013, 135, 2947.
[22]
(d) Cho, S. H.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 8157.
[22]
(e) Larsen, M. A.; Cho, S. H.; Hartwig, J. J. Am. Chem. Soc. 2016, 138, 762.
[22]
(f) Reyes, R. L.; Iwai, T.; Maeda, S.; Sawamura, M. J. Am. Chem. Soc. 2019, 141, 6817.
[22]
(g) Reyes, R. L.; Sato, M.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2020, 142, 589.
[22]
(h) Reyes, R. L.; Sato, M.; Iwai, T.; Suzuki, K.; Maeda, S.; Sawamura, M. Science 2020, 369, 970.
[22]
(i) Yang, Y.; Chen, L.; Xu, S. Angew. Chem. Int. Ed. 2021, 60, 3524.
[22]
(j) Du, R.; Liu, L.; Xu, S. Angew. Chem. Int. Ed. 2021, 60, 5843.
[22]
(k) Liu, L.; Du, R.; Xu, S. Chin. J. Org. Chem. 2021, 41, 1572. (in Chinese)
[22]
( 刘路华, 杜荣荣, 徐森苗, 有机化学, 2021, 41, 1572.)
[23]
(a) Rablen, P. R.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 4648.
[23]
(b) Walton, J. C.; McCarroll, A. J.; Chen, Q.; Carboni, B.; Nziengui, R. J. Am. Chem. Soc. 2000, 122, 5455.
[24]
Sasaki, I.; Taguchi, J.; Hiraki, S.; Ito, H.; Ishiyama, T. Chem.-Eur. J. 2015, 21, 9236.
[25]
Crystallographic data for 18 could be found in the Supporting Information. CCDC 2104779 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
[26]
Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew. Chem. Int. Ed. 2016, 55, 9690.
[27]
Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2006, 71, 4651.
文章导航

/