钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的密度泛函理论研究进展
收稿日期: 2021-10-19
修回日期: 2021-12-12
网络出版日期: 2022-01-11
基金资助
国家自然科学基金(21763033); 云南省万人计划“青年拔尖人才”专项资助项目
Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds
Received date: 2021-10-19
Revised date: 2021-12-12
Online published: 2022-01-11
Supported by
National Natural Science Foundation of China(21763033); Top Young Talents of Yunnan Ten Thousand People Plan
过渡金属催化C—H键官能团化是形成C—X (X=O, N, F, I, ……)键的有效方法, 在传统有机合成、农药、医药以及构筑含C—X杂环的生物活性天然产物基本骨架方面都扮演着重要角色. 钯催化C—H键官能团化形成C—X键的方法具有反应效率高、原子经济性好、环境友好等优点, 是近年来过渡金属催化构建C—X键的研究热点. 采用密度泛函理论(DFT)对钯催化C—H键官能团化形成C—X键的反应开展理论研究, 可获取有关反应路径的诸多信息, 帮助人们从微观层面深入认识此类反应的微观机理和反应选择性调控机制, 为改进钯催化C—H键官能团化形成C—X键的选择性和反应性控制拓展新思路. 对近十年来钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的最新理论研究进展进行了综述, 对上述反应的微观机理和反应选择性进行了深入探讨, 并对该领域的现存问题和发展前景进行了总结与展望.
石宇冰 , 白文己 , 母伟花 , 李江平 , 于嘉玮 , 连冰 . 钯催化C—H键官能团化形成C—X (X=O, N, F, I, ……)键的密度泛函理论研究进展[J]. 有机化学, 2022 , 42(5) : 1346 -1374 . DOI: 10.6023/cjoc202110027
Transition metal-catalyzed C—H functionalization is an effective method for constructing C—X (X=O, N, F, I, …) bonds, which plays a crucial role not only in traditional organic synthesis, pesticides and medicine areas, but also in generating skeletons of biologically active natural products containing C—X heterocycles. Due to its high reaction efficiency, good atomic economy and environmental friendliness, palladium-catalyzed C—H functionalization has been demonstrated as one of the focus topics in the field of transition metal-catalyzed construction of C—X bonds for decades. Based on previous experimental results, density functional theory (DFT) has been employed to study the palladium-catalyzed C—H functionalization for constructing C—X bonds in detail, for obtaining more information about reaction process, such as microscopic reaction mechanism and selectivity regulation principles, and thus inspire new ideas for improving the selectivity and reactivity of palladium-catalyzed C—H functionalization in constructing C—X bonds. Herein, the latest density functional theory research results on palladium-catalyzed C—H functionalization in constructing C—X (X=O, N, F, I, …) bonds are summarized, with emphasis on the corresponding computational results about microcosmic reaction mechanism and selectivity controlling. The present issues and prospects of future development in this field are also summarized and forecasted in the end.
[1] | Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. |
[2] | Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. |
[3] | Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. |
[4] | Zhang, S.; Shi, L.; Ding, Y. J. Am. Chem. Soc. 2011, 133, 20218. |
[5] | Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. |
[6] | Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. |
[7] | Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. |
[8] | Wu, M.-J.; Chu, J.-H. J. Chin. Chem. Soc. 2020, 67, 399. |
[9] | Liao, G.; Zhang, T.; Lin, Z.-K.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 19773. |
[10] | Gramage-Doria, R. Chem.-Eur. J. 2020, 26, 9688. |
[11] | Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230. |
[12] | Kumar, P.; Nagtilak, P. J.; Kapur, M. New J. Chem. 2021, 45, 13692. |
[13] | Das, R.; Kapur, M. J. Org. Chem. 2017, 82, 1114. |
[14] | Youn, S. W.; Cho, C.-G. Org. Biomol. Chem. 2021, 19, 5028. |
[15] | Luo, H.-H.; Pei, N.; Zhang, J. Chin. J. Org. Chem. 2021, 41, 2990. (in Chinese) |
[15] | (罗欢欢, 裴娜, 张敬, 有机化学, 2021, 41, 2990.) |
[16] | Zou, X.-L.; Xu, X.-M. Chin. J. Org. Chem. 2021, 41, 2610. (in Chinese) |
[16] | (邹晓亮, 徐森苗, 有机化学, 2021, 41, 2610.) |
[17] | Marchese, A. D.; Adrianov, T.; Lautens, M. Angew. Chem., Int. Ed. 2021, 60, 16750. |
[18] | Vijaykumar, M.; Punji, B. Synthesis 2021, 53, 2935. |
[19] | Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. |
[20] | Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362. |
[21] | Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654. |
[22] | Chen, D. Y. K.; Youn, S. W. Chem.-Eur. J. 2012, 18, 9452. |
[23] | Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451. |
[24] | Chao, J.; Li, H.; Cheng, K. W.; Yu, M. S.; Chang, R. C.; Wang, M. J. Nutr. Biochem. 2010, 21, 482. |
[25] | Chen, T.-B.; Zhang, M. Chin. J. Org. Chem. 2015, 35, 813. (in Chinese) |
[25] | (陈天保, 章明, 有机化学, 2015, 35, 813.) |
[26] | Zhao, k.; Yang, L.; Liu, J.-H.; Xia, C.-G. Chin. J. Org. Chem. 2018, 38, 2833. (in Chinese) |
[26] | (赵康, 杨磊, 刘建华, 夏春谷, 有机化学, 2018, 38, 2833.) |
[27] | Timsina, Y. N.; Gupton, B. F.; Ellis, K. C. ACS Catal. 2018, 8, 5732. |
[28] | Zhang, M.; Wang, Q.; Peng, Y.; Chen, Z.; Wan, C.; Chen, J.; Zhao, Y.; Zhang, R.; Zhang, A. Q. Chem. Commun. 2019, 55, 13048. |
[29] | Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003. |
[30] | Das, R.; Kapur, M. Asian J. Org. Chem. 2018, 7, 1524. |
[31] | Ma, X.; Mo, Q.; Chang, J.; Xie, K. Synth. Commun. 2018, 48, 1403. |
[32] | Mboyi, C. D.; Testa, C.; Reeb, S.; Genc, S.; Cattey, H.; Fleurat-Lessard, P.; Roger, J.; Hierso, J.-C. ACS Catal. 2017, 7, 8493. |
[33] | Xu, J.; Wei, Z.; Li, J.-R. Chin. J. Org. Chem. 2012, 32, 1208. (in Chinese) |
[33] | (徐娟, 魏真, 李加荣, 有机化学, 2012, 32, 1208.) |
[34] | Zhou, B.; Lu, A.; Zhang, Y. Synlett 2019, 30, 685. |
[35] | Borpatra, P. J.; Deka, B.; Deb, M. L.; Baruah, P. K. Org. Chem. Front. 2019, 6, 3445. |
[36] | Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263. |
[37] | Plata, R. E.; Singleton, D. A. J. Am. Chem. Soc. 2015, 137, 3811. |
[38] | Bonney, K. J.; Schoenebeck, F. Chem. Soc. Rev. 2014, 43, 6609. |
[39] | Houk, K. N. Chem. Soc. Rev. 2014, 43, 4905. |
[40] | Cheng, G.-J.; Zhang, X.; Chung, L. W.; Xu, L.; Wu, Y.-D. J. Am. Chem. Soc. 2015, 137, 1706. |
[41] | Zhang, X.; Chung, L. W.; Wu, Y.-D. Acc. Chem. Res. 2016, 49, 1302. |
[42] | Jiang, Y.-Y.; Man, X.; Bi, S. Sci. China Chem. 2016, 59, 1448. |
[43] | Zhang, K.-R.; Wang, Y.-Y.; Zhu, H.-D.; Peng, Q. Chin. J. Org. Chem. 2021, 41, 3995. (in Chinese) |
[43] | (张凯瑞, 王亚亚, 朱宏丹, 彭谦, 有机化学, 2021, 41, 3995.) |
[44] | Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749. |
[45] | Musaev, D. G.; Figg, T. M.; Kaledin, A. L. Chem. Soc. Rev. 2014, 43, 5009. |
[46] | Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F. Chem. Rev. 2015, 115, 9532. |
[47] | Davies, D. L.; Macgregor, S. A.; McMullin, C. L. Chem. Rev. 2017, 117, 8649. |
[48] | Yang, Y.-F.; She, Y. Int J Quantum Chem. 2018, 118, e25723. |
[49] | Xie, H.; Fan, T.; Lei, Q.; Fang, W. Sci. China Chem. 2016, 59, 1432. |
[50] | Yang, B.; Schouten, A.; Ess, D. H. J. Am. Chem. Soc. 2021, 143, 8367. |
[51] | Gygi, D.; Gonzalez, M. I.; Hwang, S. J.; Xia, K. T.; Qin, Y.; Johnson, E. J.; Gygi, F.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2021, 143, 6060. |
[52] | Esteruelas, M. A.; Martínez, A.; Oliván, M.; Oñate, E. J. Am. Chem. Soc. 2020, 142, 19119. |
[53] | Bera, M.; Maji, A.; Sahoo, S. K.; Maiti, D. Angew. Chem., Int. Ed. 2015, 54, 8515. |
[54] | He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754. |
[55] | Salazar, C. A.; Gair, J. J.; Flesch, K. N.; Guzei, I. A.; Lewis, J. C.; Stahl, S. S. Angew. Chem., Int. Ed. 2020, 59, 10873. |
[56] | Bai, Z.; Cai, C.; Sheng, W.; Ren, Y.; Wang, H. Angew. Chem., Int. Ed. 2020, 59, 14686. |
[57] | Ezawa, T.; Sohtome, Y.; Hashizume, D.; Adachi, M.; Akakabe, M.; Koshino, H.; Sodeoka, M. J. Am. Chem. Soc. 2021, 143, 9094. |
[58] | Oliveira, J. C. A.; Dhawa, U.; Ackermann, L. ACS Catal. 2021, 11, 1505. |
[59] | Sahharova, L. T.; Gordeev, E. G.; Eremin, D. B.; Ananikov, V. P. ACS Catal. 2020, 10, 9872. |
[60] | Kang, K.; Huang, L.; Weix, D. J. J. Am. Chem. Soc. 2020, 142, 10634. |
[61] | Yoshino, T.; Matsunaga, S. ACS Catal. 2021, 11, 6455. |
[62] | Zhu, M.-H.; Zhang, X.-W.; Usman, M.; Cong, H.; Liu, W.-B. ACS Catal. 2021, 11, 5703. |
[63] | Kato, Y.; Lin, L.; Kojima, M.; Yoshino, T.; Matsunaga, S. ACS Catal. 2021, 11, 4271. |
[64] | Liu, J.-R.; Duan, Y.-Q.; Zhang, S.-Q.; Zhu, L.-J.; Jiang, Y.-Y.; Bi, S.; Hong, X. Org. Lett. 2019, 21, 2360. |
[65] | Veerakumar, P.; Thanasekaran, P.; Lu, K.-L.; Lin, K.-C.; Rajagopal, S. ACS Sustainable Chem. Eng. 2017, 5, 8475. |
[66] | Rao, D. Y.; Anoop, A. J. Phys. Chem. C 2020, 124, 582. |
[67] | Wang, Z.; Fu, Y.; Zhang, Q.; Liu, H.; Wang, J. J. Org. Chem. 2020, 85, 7683. |
[68] | Favier, L.; Pla, D.; Gómez, M. Chem. Rev. 2020, 120, 1146. |
[69] | Anand, M.; Sunoj, R. B. Org. Lett. 2011, 13, 4802. |
[70] | Anand, M.; Sunoj, R. B. Organometallics 2012, 31, 6466. |
[71] | Lian, B.; Zhang, L.; Chass, G. A.; Fang, D.-C. J. Org. Chem. 2013, 78, 8376. |
[72] | Sun, Y.-H.; Sun, T.-Y.; Wu, Y.-D.; Zhang, X.; Rao, Y. Chem. Sci. 2016, 7, 2229. |
[73] | Maji, A.; Bhaskararao, B.; Singha, S.; Sunoj, R. B.; Maiti, D. Chem. Sci. 2016, 7, 3147. |
[74] | Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066. |
[75] | Yang, Z.-W.; Zhang, Q.; Jiang, Y.-Y.; Li, L.; Xiao, B.; Fu, Y. Chem. Commun. 2016, 52, 6709. |
[76] | Yu, Y.; Lu, Q.; Chen, G.; Li, C.; Huang, X. Angew. Chem., Int. Ed. 2018, 57, 319. |
[77] | Jiang, J.; Yuan, D.; Ma, C.; Song, W.; Lin, Y.; Hu, L.; Zhang, Y. Org. Lett. 2021, 23, 279. |
[78] | Ke, Z.; Cundari, T. R. Organometallics 2010, 29, 821. |
[79] | Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7652. |
[80] | Anand, M.; Sunoj, R. B.; Schaefer, H. F. J. Am. Chem. Soc. 2014, 136, 5535. |
[81] | Anand, M.; Sunoj, R. B.; Schaefer, H. F. ACS Catal. 2016, 6, 696. |
[82] | Zhou, Y.; Bao, X. Org. Lett. 2016, 18, 4506. |
[83] | He, G.; Lu, G.; Guo, Z.; Liu, P.; Chen, G. Nature Chem. 2016, 8, 1131. |
[84] | Gary, J. B.; Sanford, M. S. Organometallics 2011, 30, 6143. |
[85] | Bandara, H. M. D.; Jin, D.; Mantell, M. A.; Field, K. D.; Wang, A.; Narayanan, R. P.; Deskins, N. A.; Emmert, M. H. Catal. Sci. Technol. 2016, 6, 5304. |
[86] | Li, B.-W.; Wang, M.-Y.; Fang, S.; Liu, J.-Y. Organometallics 2019, 38, 2189. |
[87] | Testa, C.; Roger, J.; Scheib, S.; Fleurat-Lessard, P.; Hierso, J.-C. Adv. Synth. Catal. 2015, 357, 2913. |
[88] | Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.; Goddard, W. A.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 3793. |
[89] | Cui, L.; Saeys, M. Chem. Cat. Chem. 2011, 3, 1060. |
[90] | Katcher, M. H.; Norrby, P.-O.; Doyle, A. G. Organometallics 2014, 33, 2121. |
[91] | Mao, Y.-J.; Luo, G.; Hao, H.-Y.; Xu, Z.-Y.; Lou, S.-J.; Xu, D.-Q. Chem. Commun. 2019, 55, 14458. |
[92] | Haines, B. E.; Xu, H.; Verma, P.; Wang, X.-C.; Yu, J.-Q.; Musaev, D. G. J. Am. Chem. Soc. 2015, 137, 9022. |
[93] | Zhou, M.-J.; Yang, T.-L.; Dang, L. J. Org. Chem. 2016, 81, 1006. |
[94] | Saito, H.; Yamamoto, K.; Sumiya, Y.; Liu, L.-J.; Nogi, K.; Maeda, S.; Yorimitsu, H. Chem. Asian J. 2020, 15, 2442. |
[95] | Jaiswal, Y.; Kumar, Y.; Kumar, A. Org. Biomol. Chem. 2019, 17, 6809. |
[96] | Zhou, Y.-P.; Wang, M.-Y.; Fang, S.; Chen, Y.; Liu, J.-Y. RSC Adv. 2016, 6, 18300. |
[97] | Tang, B.-C.; Lin, W.-X.; Chen, X.-L.; He, C.; Ma, J.-T.; Wu, Y.-D.; Lan, Y.; Wu, A.-X. Nat. Commun. 2020, 11, 5662. |
[98] | Garçon, M.; Mun, N. W.; White, A. J. P.; Crimmin, M. R. Angew. Chem., Int. Ed. 2021, 60, 6145. |
[99] | Garçon, M.; White, A. J. P.; Crimmin, M. R. Chem. Commun. 2018, 54, 12326. |
[100] | Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.-Eur. J. 2010, 16, 2654. |
[101] | Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902. |
[102] | Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 4187. |
[103] | Munz, D.; Meyer, D.; Strassner, T. Organometallics 2013, 32, 3469. |
[104] | Cundari, T. R.; Prince, B. M. J. Organomet. Chem. 2011, 696, 3982. |
[105] | Prince, B. M. Comput. Theor. Chem. 2019, 1162, 112503. |
[106] | Wang, M.; Yang, Y.; Fan, Z.; Cheng, Z.; Zhu, W.; Zhang, A. Chem. Commun. 2015, 51, 3219. |
[107] | Canty, A. J.; Ariafard, A.; Camasso, N. M.; Higgs, A. T.; Yates, B. F.; Sanford, M. S. Dalton. Trans. 2017, 46, 3742. |
[108] | Buettner, C. S.; Willcox, D.; Chappell, B. G. N.; Gaunt, M. J. Chem. Sci. 2019, 10, 83. |
[109] | Pan, J.; Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 8647. |
[110] | Iglesias, Á.; Álvarez, R.; de Lera, Á. R.; Muñiz, K. Angew. Chem., Int. Ed. 2012, 51, 2225. |
[111] | McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510, 129. |
[112] | Zhang, Q.; Yu, H.; Fu, Y. Sci. China Chem. 2015, 58, 1316. |
[113] | Zhang, Y.; Qi, Z.-H.; Ruan, G.-Y.; Zhang, Y.; Liu, W.; Wang, Y. RSC Adv. 2015, 5, 71586. |
[114] | Smalley, A. P.; Gaunt, M. J. J. Am. Chem. Soc. 2015, 137, 10632. |
[115] | Zakrzewski, J.; Smalley, A. P.; Kabeshov, M. A.; Gaunt, M. J. Lapkin, A. A. Angew. Chem., Int. Ed. 2016, 55, 8878. |
[116] | Duarte, F. J. S.; Poli, G.; Calhorda, M. J. ACS Catal. 2016, 6, 1772. |
[117] | Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. ACS Catal. 2020, 10, 114. |
[118] | Sun, H.; Zhang, Y.; Chen, P.; Wu, Y.-D.; Zhang, X.; Huang, Y. Adv. Synth. Catal. 2016, 358, 1946. |
[119] | Chen, Y.-Q.; Singh, S.; Wu, Y.; Wang, Z.; Hao, W.; Verma, P.; Qiao, J. X.; Sunoj, R. B.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 9966. |
[120] | Giri, R.; Lan, Y.; Liu, P.; Houk, K. N.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 14118. |
[121] | Deb, A.; Singh, S.; Seth, K.; Pimparkar, S.; Bhaskararao, B.; Guin, S.; Sunoj, R. B.; Maiti, D. ACS Catal. 2017, 7, 8171. |
[122] | He, J.; Shao, Q.; Wu, Q.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 3344. |
[123] | Xing, Y.-Y.; Liu, J.-B.; Sun, Q.-M.; Sun, C.-Z.; Huang, F.; Chen, D.-Z. J. Org. Chem. 2019, 84, 10690. |
/
〈 |
|
〉 |