研究论文

一种利用酰胺基转移反应脱除酰基保护基的实用方法

  • 韩群 ,
  • 徐坤 ,
  • 田发宁 ,
  • 黄胜阳 ,
  • 曾程初
展开
  • 北京工业大学环境与生命学部 北京 100124

收稿日期: 2021-12-03

  修回日期: 2021-12-30

  网络出版日期: 2022-01-11

基金资助

国家自然科学基金(21871019); 北京工商大学北京市食品风味化学重点实验室开放课题基金资助项目(BTBU)

A Practical Transamidation Strategy for the N-Deacylation of Amides

  • Qun Han ,
  • Kun Xu ,
  • Faning Tian ,
  • Shengyang Huang ,
  • Chengchu Zeng
Expand
  • Faculty of Environment and Life, Beijing University of Technology, Beijing 100124

Received date: 2021-12-03

  Revised date: 2021-12-30

  Online published: 2022-01-11

Supported by

National Natural Science Foundation of China(21871019); Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University(BTBU)

摘要

酰胺化合物中的酰基脱除是有机合成化学的重要研究方向之一. 但是, 由于酰胺键较为惰性, 在温和条件下脱除酰基保护基的报道较少. 为了解决上述问题, 发展了一种使用氨水脱除酰基保护基的新方法. 该方法不但条件温和, 而且可以放大规模反应(10 mmol). 一系列药物分子或者药物分子衍生物, 例如吲哚美辛、N-乙酰基褪黑素及N-乙酰基卡布洛芬中的酰基都可以采用此方法高产率脱除. 该方法具有较好的官能团容忍性、操作简便、条件温和、产率高以及所用的试剂廉价易得等优势. 因此, 该方法有望成为N-酰基脱保护的实用方法之一.

本文引用格式

韩群 , 徐坤 , 田发宁 , 黄胜阳 , 曾程初 . 一种利用酰胺基转移反应脱除酰基保护基的实用方法[J]. 有机化学, 2022 , 42(4) : 1123 -1128 . DOI: 10.6023/cjoc202112007

Abstract

The N-deacylation of amides under mild conditions is highly desirable in organic synthesis, but it remains challenging due to the chemically robust nature of amide bond. A general solution to the N-deacylation of amides with NH3•H2O under mild and scalable conditions (10 mmol) was developed. A range of drugs and drug derivatives including indomethacin, N-acetyl melatonin and N-acetyl carprofen could be deacylated to release free amines in excellent yields. The good functional group compatibility, combined with operational simplicity, excellent yield and cost effectiveness of all reagents, makes this protocol a prime candidate for N-deacylation of amide.

参考文献

[1]
(a) Wang, H.; Shi, J.; Tan, J.; Xu, W.; Zhang, S.; Xu, K. Org. Lett. 2019, 21, 9430.
[1]
(b) Wang, X.; Xu, X.; Wang, Z.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese)
[1]
( 王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.)
[1]
(c) Yang, Q.; Yan, X.-T.; Feng, C.-T.; Chen, D.-X.; Yan, Z.-Z.; Xu, K. Org. Chem. Front. 2021, 8, 6384.
[1]
(d) Ge, Y.-X.; Yan, Q.-Q.; Tian, Y.-F.; Wang, H.-J.; Zhang, C.-F.; Li, Z.-J. Chin. J. Org. Chem. 2021, 41, 3106. (in Chinese)
[1]
( 葛雅欣, 闫芹芹, 田云飞, 王海军, 张春芳, 李泽江, 有机化学, 2021, 41, 3106.)
[1]
(e) Yi, R.-N.; He, W.-M. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
[1]
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
[2]
Baran, P. S.; Corey, E. J. J. Am. Chem. Soc. 2002, 124, 7904.
[3]
(a) Wen, J.; Wang, F.; Zhang, X. M. Chem. Soc. Rev. 2021, 50, 3211.
[3]
(b) Jiang, X.-L.; Zhu, S.-L. Chin. J. Org. Chem. 2021, 41, 3745. (in Chinese)
[3]
( 江晓莉, 朱少林, 有机化学, 2021, 41, 3745.)
[4]
(a) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. P. Org. Chem. Front. 2014, 1, 843.
[4]
(b) Luo, H.; Pei, N.; Zhang, J. Chin. J. Org. Chem. 2021, 41, 2990. (in Chinese)
[4]
( 罗欢欢, 裴娜, 张敬, 有机化学, 2021, 41, 2990.)
[4]
(c) Feng, Y.-L.; Shi, B. Chin. J. Org. Chem. 2021, 41, 3753. (in Chinese)
[4]
( 冯亚岚, 史炳锋, 有机化学, 2021, 41, 3753.)
[4]
(d) Sun, S.-Z.; Wang, X.; Cheng, T.-J.; Xu, H.; Dai, H.-X. Chin. J. Org. Chem. 2020, 40, 3371 (in Chinese)
[4]
( 孙尚政, 王星, 程泰锦, 徐辉, 戴辉雄, 有机化学, 2020, 40, 3371.)
[4]
(e) Liu, Y.-Y.; Zhang, Y.; Wan, J.-P. J. Org. Chem. 2017, 82, 8950.
[4]
(f) Du, Y.; Liu, Y.-Y.; Wan, J.-P. J. Org. Chem. 2018, 83, 3403.
[5]
(a) Wuts, P. G. M.; Greene, T. W. Protective Groups in Organic Synthesis, 4th ed., Wiley-Interscience, Hoboken, 2006, pp. 773-789.
[5]
(b) Yoo, M.; Jung, K.-W. ChemistrySelect 2018, 3, 1527.
[6]
Spaggiari, A.; Blaszczak, L. C.; Prati, F. Org. Lett. 2004, 6, 3885.
[7]
Koenig, S. G.; Vandenbossche, C. P.; Zhao, H.; Mousaw, P.; Singh, S. P.; Bakale, R. P. Org. Lett. 2009, 11, 433.
[8]
Sultane, P. R.; Mete, T. B.; Bhat, R. G. Org. Biomol. Chem. 2014, 12, 261.
[9]
Wang, A.-E.; Chang, Z.; Liu, Y.-P.; Huang, P.-Q. Chin. Chem. Lett. 2015, 26, 1055.
[10]
Kita, Y.; Nishii, Y.; Onoue, A.; Mashima, K. Adv. Synth. Catal. 2013, 355, 3391.
[11]
Shimizu, Y.; Morimoto, H.; Zhang, M.; Ohshima, T. Angew. Chem., Int. Ed. 2012, 51, 8564.
[12]
(a) Lian, F.; Xu, K. Chin. J. Org. Chem. 2020, 40, 3490. (in Chinese)
[12]
( 廉菲, 徐坤, 有机化学, 2020, 40, 3490.)
[12]
(b) Meng, Z.-Y.; Feng, C.-T.; Xu, K. Chin. J. Org. Chem. 2021, 41, 2535. (in Chinese)
[12]
( 蒙泽银, 冯承涛, 徐坤, 有机化学, 2021, 41, 2535.)
[12]
(c) Lian, F.; Xu, K.; Zeng, C. Chem. Rec. 2021, 21, 2290.
[12]
(d) Li, J.; Zhang, S.; Xu, K. Chin. Chem. Lett. 2021, 32, 2729.
[12]
(e) Zhang, S.; Li, L.; Li, J.; Shi, J.; Xu, K.; Gao, W.; Zong, L.; Li, G.; Findlater, M. Angew. Chem., Int. Ed. 2021, 60, 7275.
[12]
(f) Jiang, Y.; Xu, K.; Zeng, C. CCS Chem. 2021, 3, 1911.
[13]
Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Curr. Neuropharmacol. 2017, 15, 434.
[14]
Wang, Y.-H.; Tian, J.-S.; Tan, P.-W.; Cao, Q.; Zhang, X.-X.; Cao, Z.-Y.; Zhou, F.; Wang, X.; Zhou, J. Angew Chem., Int. Ed. 2020, 59, 1634.
[15]
Kerr, W. J.; Lindsay, D. M.; Owens, P. K.; Reid, M.; Tuttle, T.; Campos, S. ACS Catal. 2017, 7, 7182.
[16]
Roth, G. J.; Heckel, A.; Colbatzky, F.; Handschuh, S.; Kley, J.; Lintz, T. L.; Lotz, R.; Grunt, U. T.; Walter, R.; Hilberg, F. J. Med. Chem. 2009, 52, 4466.
[17]
Castelo-Branco, F. S.; Lima, E. C.; Domingos, J. L. O.; Pintob, A. C.; Lourenço, M. C. S.; Gomes, K. M.; Costa-Lima, M. M.; Araujo-Lima, C. F.; Aiub, C. A. F.; Felzenszwalb, I.; Costa, T. E. M. M.; Penido, C.; Henriques, M. G.; Boechat, N. Eur. J. Med. Chem. 2018, 146, 529.
[18]
He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.
[19]
Wang, Q.-F.; Chai, H.; Yu, Z.-K. Organometallics 2018, 37, 584.
[20]
Wu, J.-J.; Talwar, D.; Johnston, S.; Yan, M.; Xiao, J.-L. Angew. Chem., Int. Ed. 2013, 52, 6983.
[21]
Huang, Y.-Q.; Song, H.-J.; Liu, Y.-X.; Wang, Q.-M. Chem.-Eur. J. 2018, 24, 2065.
[22]
Zhang, J.-Y.; Chen, S.-Y.; Chen, F.-F.; Xu, W.-S.; Deng, G.-J.; Gong, H. Adv. Synth. Catal. 2017, 359, 2358.
[23]
Ning, X.-S.; Liang, X.; Hu, K.-F.; Yao, C.-Z.; Qu, J.-P.; Kang, Y.-B. Adv. Synth. Catal. 2018, 360, 1590.
[24]
Barykina, O. V.; Snider, B. B. Org. Lett. 2010, 12, 2664.
[25]
Song, W. Z.; Dong, K.; Li, M. Org. Lett. 2020, 22, 371.
[26]
Wang, M.; Fan, Q.-L.; Jiang, X.-F. Org. Lett. 2018, 20, 216.
[27]
Omer, H. M.; Liu, P.; Brummond, K. M. J. Org. Chem. 2020, 85, 7959.
[28]
Lin, W.; Hu, M.-H.; Feng, X.; Fu, L.; Cao, C.-P.; Huang, Z.-B.; Shi, D.-Q. Tetrahedron Lett. 2014, 55, 2238.
[29]
Laursen, S. R.; Jensen, M. T.; Lindhardt, A. T.; Jacobsen, M. F.; Skrydstrup, T. Eur. J. Org. Chem. 2016, 2016, 1881.
[30]
Zhang, F.; Li, L.; Zhang, J. Sci. Rep. 2019, 9, 2787.
文章导航

/