基于稀土金属路易斯酸碱对化学的研究进展
收稿日期: 2021-12-04
修回日期: 2021-12-31
网络出版日期: 2022-01-21
基金资助
国家自然科学基金(21502132); 国家自然科学基金(21871204)
Progress in Rare-Earth Metal-Based Lewis Pair Chemistry
Received date: 2021-12-04
Revised date: 2021-12-31
Online published: 2022-01-21
Supported by
National Natural Science Foundation of China(21502132); National Natural Science Foundation of China(21871204)
管怡雯 , 常克俭 , 孙千林 , 徐信 . 基于稀土金属路易斯酸碱对化学的研究进展[J]. 有机化学, 2022 , 42(5) : 1326 -1335 . DOI: 10.6023/cjoc202112008
Rare-earth (RE) metal-base Lewis pairs comprised of Lewis acidic RE metals and main group Lewis bases have been developed recently. Distinct from traditional reaction pathway mediated by RE metal complexes, it’s the synergistic effect between Lewis acidic RE metal center and Lewis basic center that enables the activation of incoming substrates. This kind of extraordinary Lewis pairs can split the non-polar H-H bond, as well as react with carbonyl compounds, diazo compounds, azide compounds, etc., leading to a series of unique and intriguing RE metal complexes. Meanwhile, these Lewis pairs are also applied as catalysts for polymerization of conjugated polar alkenes and hydrosilylation of carbon dioxide with excellent results. Researches mentioned above are reviewed in this paper, and new prospects for the future development of RE based Lewis pairs are put forward.
Key words: rare-earth metal; Lewis pair; dihydrogen activation; polymerization; CO2 reduction
[1] | Qian, C.; Du, C. Organolanthanide Chemistry, Chemical Industry Press, Beijing, 2004 (in Chinese) |
[1] | ( 钱长涛, 杜灿屏, 稀土金属有机化学, 化学工业出版社, 北京, 2004.) |
[2] | Qian, C.; Wang, C.; Chen, Y. Acta Chim. Sinica 2014, 72, 883. (in Chinese) |
[2] | (钱长涛, 王春红, 陈耀峰, 化学学报, 2014, 72, 883.) |
[3] | Nishiura, M.; Guo, F.; Hou, Z. Acc. Chem. Res. 2015, 48, 2209. |
[4] | Xiao, Y.; Wang, Q.; Zhao, B.; Yao, Y. Chin. J. Org. Chem. 2015, 35, 1598. (in Chinese) |
[4] | (肖洋, 王千宇, 赵蓓, 姚英明, 有机化学, 2015, 35, 1598.) |
[5] | Su, J.; Xu, X. J. Chin. Soc. Rare Earths 2021, 39, 171. (in Chinese) |
[5] | (苏健洪, 徐信, 中国稀土学报, 2021, 39, 171.) |
[6] | Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephen, D. W. Science 2006, 314, 1124. |
[7] | Welch, G. C.; Stephen, D. W. J. Am. Chem. Soc. 2007, 129, 1880. |
[8] | Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46. |
[9] | Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400. |
[10] | Li, N.; Zhang, W.-X. Chin. J. Chem. 2020, 38, 1360. |
[11] | Tan, X.; Wang, H. Chin. J. Chem. 2021, 39, 1344. |
[12] | Stephan, D. W.; Erker, G. Chem. Sci. 2014, 5, 2625. |
[13] | Meng, W.; Feng, X.; Du, H. Acc. Chem. Res. 2018, 51, 191. |
[14] | Meng, W.; Feng, X.; Du, H. Chin. J. Chem. 2020, 38, 625. |
[15] | Stephan, D. W. J. Am. Chem. Soc. 2021, 43, 20002. |
[16] | Mahdi, T.; Stephan, D. W. Angew. Chem. Int. Ed. 2013, 52, 12418. |
[17] | Légaré, M. A.; Courtemanche, M. A.; Rochette, É.; Fontaine, F. G. Science 2015, 349, 513. |
[18] | Hong, M.; Chen, J.; Chen, E. Y.-X. Chem. Rev. 2018, 118, 10551. |
[19] | Zhao, W.; He, J.; Zhang, Y. Sci. Bull. 2019, 64, 1830. |
[20] | Flynn, S. R.; Wass, D. F. ACS Catal. 2013, 3, 2574. |
[21] | Chapman, A. M.; Haddow, M. F.; Wass, D. F. J. Am. Chem. Soc. 2011, 133, 8826. |
[22] | Chapman, A. M.; Haddow, M. F.; Wass, D. F. J. Am. Chem. Soc. 2011, 133, 18463. |
[23] | Xu, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. J. Am. Chem. Soc. 2013, 135, 6465. |
[24] | Xu, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. Angew. Chem. Int. Ed. 2013, 52, 13629. |
[25] | Sgro, M. J.; Stephan, D. W. Chem. Commun. 2013, 49, 2610. |
[26] | Sgro, M. J.; Stephan, D. W. Angew. Chem. Int. Ed. 2012, 51, 11343. |
[27] | Kubas, G. J. Chem. Rev. 2007, 107, 4152. |
[28] | Guan, Y.; Lu, E.; Xu, X. J. Rare Earths 2021, 39, 1017. |
[29] | Chang, K.; Dong, Y.; Xu, X. Chem. Commun. 2019, 55, 12777. |
[30] | Lappert, M. F.; Singh, A.; Smith, R. G. Inorg. Synth. 1990, 27, 164. |
[31] | Xu, P.; Yao, Y.; Xu, X. Chem. Eur. J. 2017, 23, 1263. |
[32] | Yao, T.; Xu, P.; Xu, X. Dalton Trans. 2019, 48, 7743. |
[33] | Chang, K.; Xu, X. Dalton Trans. 2017, 46, 4514. |
[34] | Chang, K.; Wang, X.; Fan, Z.; Xu, X. Inorg. Chem. 2018, 57, 8568. |
[35] | Du, J; Zhang, Y.; Huang, Z.; Zhou, S.; Fang, H.; Cui, P. Dalton Trans. 2020, 49, 12311. |
[36] | Sun, X.; Su, W.; Shi, K.; Xie, Z.; Zhu, C. Chem.-Eur. J. 2020, 26, 5354. |
[37] | Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. (in Chinese) |
[37] | (陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.) |
[38] | Arnold, P. L.; Marr, I. A.; Zlatogorsky, S.; Bellabarba, R.; Tooze, R. P. Dalton Trans. 2014, 43, 34. |
[39] | Arnold, P. L.; Kerr, R. W. F.; Weetman, C.; Docherty, S. R.; Rieb, J.; Cruickshank, F. L.; Wang, K.; Jandl, C.; McMullon, M. W.; Pöthig, A.; Kühn, F. E.; Smith, A. D. Chem. Sci. 2018, 9, 8035. |
[40] | Pieper, M.; Lamm, J. H.; Neumann, B.; Stammler, H. G.; Mitzel, N. W. Dalton Trans. 2017, 46, 5326. |
[41] | Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Interscience, New York, 1998. |
[42] | Cai, B.; Xuan, J. Chin. J. Org. Chem. 2021, 41, 4565. (in Chinese) |
[42] | (蔡宝贵, 宣俊, 有机化学, 2021, 41, 4565.) |
[43] | Yue, Q.; Gao, E.-Q. Coord. Chem. Rev. 2019, 382, 1. |
[44] | Dash, C.; Yousufuddin, M.; Cundari, T. R.; Dias, H. V. R. J. Am. Chem. Soc. 2013, 135, 15479. |
[45] | Turner, Z. R.; Bellabarba, R.; Tooze, R. P.; Arnold, P. L. J. Am. Chem. Soc. 2010, 132, 4050. |
[46] | Dong, Y.; Chang, K.; Xu, X. Chin. J. Chem. 2020, 38, 559. |
[47] | Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479. |
[48] | Chen, E. Y.-X. Chem. Rev. 2009, 109, 5157. |
[49] | Liu, B.; Qiao, K.; Fang, J.; Wang, T.; Wang, Z.; Liu, D.; Xie, Z.; Maron, L.; Cui, D. Angew. Chem. Int. Ed. 2018, 57, 14896. |
[50] | Liu, D.; Wang, M.; Chai, Y.; Wan, X.; Cui, D. ACS Catal. 2019, 9, 2618. |
[51] | Nishiura, M.; Hou, Z. Nat. Chem. 2010, 2, 257. |
[52] | Yasuda, H.; Yamamoto, H.; Yokota, K.; Miyake, S.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 4908. |
[53] | Yasuda, H. J. Organomet. Chem. 2002, 647, 128. |
[54] | Zhang, Y.; Miyake, G. M.; Chen, E. Y. -X. Angew. Chem. Int. Ed. 2010, 49, 10158. |
[55] | Knaus, M. G. M.; Giuman, M. M.; Pöthig, A.; Rieger, B. J. Am. Chem. Soc. 2016, 138, 7776. |
[56] | Bai, Y.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2018, 57, 17230. |
[57] | Wang, X, -J.; Hong, M. Angew. Chem. Int. Ed. 2020, 59, 2664. |
[58] | Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Dalton. Trans. 2012, 41, 9119. |
[59] | Zhou, Y.; Jiang, S.; Xu, X. Chin. J. Chem. 2021, 39, 149. |
[60] | Xu, P.; Xu, X. ACS Catal. 2018, 8, 198. |
[61] | Xu, P.; Wu, L.; Dong, L.; Xu, X. Molecules 2018, 23, 360. |
[62] | Zhao, Y.; Luo, G.; Xu, X.; Hou, Z.; Luo, Y. Inorg. Chem. Front. 2020, 7, 4600. |
[63] | Kennemur, J. G. Macromolecules 2019, 52, 1354. |
[64] | Weger, M.; Giuman, M. M.; Knaus, M. G.; Ackermann, M.; Drees, M.; Hornung, J.; Altmann, P. J.; Fischer, R. A.; Rieger, B. Chem. Eur. J. 2018, 24, 14950. |
[65] | Scherpf, T.; Schwarz, C.; Scharf, L. T.; Zur, J.-A.; Helbig, A.; Gessner, V. H. Angew. Chem. Int. Ed. 2018, 57, 12859. |
[66] | Su, Y.; Zhao, Y.; Zhang, H.; Luo, Y.; Xu, X. Macromolecules 2021, 54, 7724. |
[67] | Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213. |
[68] | Süss-Fink, G.; Reiner, J. J. Organomet. Chem. 1981, 221, C36. |
[69] | Chen, J.; McGraw, M.; Chen, E. Y. -X. ChemSusChem 2019, 12, 4543. |
[70] | Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. Chem. Sci. 2013, 4, 2152. |
[71] | Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. J. Am. Chem. Soc. 2012, 134, 10843. |
[72] | Chang, K.; Rosal, I.; Zheng, X.; Maron, L.; Xu, X. Dalton Trans. 2021, 50, 7804. |
[73] | Park, S.; Be?zier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404. |
/
〈 |
|
〉 |