综述与进展

基于稀土金属路易斯酸碱对化学的研究进展

  • 管怡雯 ,
  • 常克俭 ,
  • 孙千林 ,
  • 徐信
展开
  • 苏州大学材料与化学化工学部 江苏省有机合成重点实验室 江苏苏州 15123

收稿日期: 2021-12-04

  修回日期: 2021-12-31

  网络出版日期: 2022-01-21

基金资助

国家自然科学基金(21502132); 国家自然科学基金(21871204)

Progress in Rare-Earth Metal-Based Lewis Pair Chemistry

  • Yiwen Guan ,
  • Kejian Chang ,
  • Qianlin Sun ,
  • Xin Xu
Expand
  • Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123
*Corresponding author. E-mail:

Received date: 2021-12-04

  Revised date: 2021-12-31

  Online published: 2022-01-21

Supported by

National Natural Science Foundation of China(21502132); National Natural Science Foundation of China(21871204)

摘要

近年来, 利用稀土金属作为路易斯酸, 与主族路易斯碱组合的路易斯酸碱对得到了开发. 这类酸碱对组合通过路易斯酸与路易斯碱协同作用, 从而实现底物的活化, 展示了与传统稀土金属配合物不同的活化模式. 其可以与氢气反应, 断裂非极性的氢-氢键; 也能够与羰基类、重氮类及叠氮类等不饱和小分子反应, 得到一系列结构独特的稀土金属配合物. 同时这类路易斯酸碱对也可以用于催化极性烯烃聚合反应、二氧化碳硅氢化还原反应中, 展现出优异的催化性能. 综述了上述研究结果, 并对该领域的发展趋势和前景进行了展望.

本文引用格式

管怡雯 , 常克俭 , 孙千林 , 徐信 . 基于稀土金属路易斯酸碱对化学的研究进展[J]. 有机化学, 2022 , 42(5) : 1326 -1335 . DOI: 10.6023/cjoc202112008

Abstract

Rare-earth (RE) metal-base Lewis pairs comprised of Lewis acidic RE metals and main group Lewis bases have been developed recently. Distinct from traditional reaction pathway mediated by RE metal complexes, it’s the synergistic effect between Lewis acidic RE metal center and Lewis basic center that enables the activation of incoming substrates. This kind of extraordinary Lewis pairs can split the non-polar H-H bond, as well as react with carbonyl compounds, diazo compounds, azide compounds, etc., leading to a series of unique and intriguing RE metal complexes. Meanwhile, these Lewis pairs are also applied as catalysts for polymerization of conjugated polar alkenes and hydrosilylation of carbon dioxide with excellent results. Researches mentioned above are reviewed in this paper, and new prospects for the future development of RE based Lewis pairs are put forward.

参考文献

[1]
Qian, C.; Du, C. Organolanthanide Chemistry, Chemical Industry Press, Beijing, 2004 (in Chinese)
[1]
( 钱长涛, 杜灿屏, 稀土金属有机化学, 化学工业出版社, 北京, 2004.)
[2]
Qian, C.; Wang, C.; Chen, Y. Acta Chim. Sinica 2014, 72, 883. (in Chinese)
[2]
(钱长涛, 王春红, 陈耀峰, 化学学报, 2014, 72, 883.)
[3]
Nishiura, M.; Guo, F.; Hou, Z. Acc. Chem. Res. 2015, 48, 2209.
[4]
Xiao, Y.; Wang, Q.; Zhao, B.; Yao, Y. Chin. J. Org. Chem. 2015, 35, 1598. (in Chinese)
[4]
(肖洋, 王千宇, 赵蓓, 姚英明, 有机化学, 2015, 35, 1598.)
[5]
Su, J.; Xu, X. J. Chin. Soc. Rare Earths 2021, 39, 171. (in Chinese)
[5]
(苏健洪, 徐信, 中国稀土学报, 2021, 39, 171.)
[6]
Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephen, D. W. Science 2006, 314, 1124.
[7]
Welch, G. C.; Stephen, D. W. J. Am. Chem. Soc. 2007, 129, 1880.
[8]
Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46.
[9]
Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400.
[10]
Li, N.; Zhang, W.-X. Chin. J. Chem. 2020, 38, 1360.
[11]
Tan, X.; Wang, H. Chin. J. Chem. 2021, 39, 1344.
[12]
Stephan, D. W.; Erker, G. Chem. Sci. 2014, 5, 2625.
[13]
Meng, W.; Feng, X.; Du, H. Acc. Chem. Res. 2018, 51, 191.
[14]
Meng, W.; Feng, X.; Du, H. Chin. J. Chem. 2020, 38, 625.
[15]
Stephan, D. W. J. Am. Chem. Soc. 2021, 43, 20002.
[16]
Mahdi, T.; Stephan, D. W. Angew. Chem. Int. Ed. 2013, 52, 12418.
[17]
Légaré, M. A.; Courtemanche, M. A.; Rochette, É.; Fontaine, F. G. Science 2015, 349, 513.
[18]
Hong, M.; Chen, J.; Chen, E. Y.-X. Chem. Rev. 2018, 118, 10551.
[19]
Zhao, W.; He, J.; Zhang, Y. Sci. Bull. 2019, 64, 1830.
[20]
Flynn, S. R.; Wass, D. F. ACS Catal. 2013, 3, 2574.
[21]
Chapman, A. M.; Haddow, M. F.; Wass, D. F. J. Am. Chem. Soc. 2011, 133, 8826.
[22]
Chapman, A. M.; Haddow, M. F.; Wass, D. F. J. Am. Chem. Soc. 2011, 133, 18463.
[23]
Xu, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. J. Am. Chem. Soc. 2013, 135, 6465.
[24]
Xu, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. Angew. Chem. Int. Ed. 2013, 52, 13629.
[25]
Sgro, M. J.; Stephan, D. W. Chem. Commun. 2013, 49, 2610.
[26]
Sgro, M. J.; Stephan, D. W. Angew. Chem. Int. Ed. 2012, 51, 11343.
[27]
Kubas, G. J. Chem. Rev. 2007, 107, 4152.
[28]
Guan, Y.; Lu, E.; Xu, X. J. Rare Earths 2021, 39, 1017.
[29]
Chang, K.; Dong, Y.; Xu, X. Chem. Commun. 2019, 55, 12777.
[30]
Lappert, M. F.; Singh, A.; Smith, R. G. Inorg. Synth. 1990, 27, 164.
[31]
Xu, P.; Yao, Y.; Xu, X. Chem. Eur. J. 2017, 23, 1263.
[32]
Yao, T.; Xu, P.; Xu, X. Dalton Trans. 2019, 48, 7743.
[33]
Chang, K.; Xu, X. Dalton Trans. 2017, 46, 4514.
[34]
Chang, K.; Wang, X.; Fan, Z.; Xu, X. Inorg. Chem. 2018, 57, 8568.
[35]
Du, J; Zhang, Y.; Huang, Z.; Zhou, S.; Fang, H.; Cui, P. Dalton Trans. 2020, 49, 12311.
[36]
Sun, X.; Su, W.; Shi, K.; Xie, Z.; Zhu, C. Chem.-Eur. J. 2020, 26, 5354.
[37]
Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. (in Chinese)
[37]
(陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.)
[38]
Arnold, P. L.; Marr, I. A.; Zlatogorsky, S.; Bellabarba, R.; Tooze, R. P. Dalton Trans. 2014, 43, 34.
[39]
Arnold, P. L.; Kerr, R. W. F.; Weetman, C.; Docherty, S. R.; Rieb, J.; Cruickshank, F. L.; Wang, K.; Jandl, C.; McMullon, M. W.; Pöthig, A.; Kühn, F. E.; Smith, A. D. Chem. Sci. 2018, 9, 8035.
[40]
Pieper, M.; Lamm, J. H.; Neumann, B.; Stammler, H. G.; Mitzel, N. W. Dalton Trans. 2017, 46, 5326.
[41]
Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Interscience, New York, 1998.
[42]
Cai, B.; Xuan, J. Chin. J. Org. Chem. 2021, 41, 4565. (in Chinese)
[42]
(蔡宝贵, 宣俊, 有机化学, 2021, 41, 4565.)
[43]
Yue, Q.; Gao, E.-Q. Coord. Chem. Rev. 2019, 382, 1.
[44]
Dash, C.; Yousufuddin, M.; Cundari, T. R.; Dias, H. V. R. J. Am. Chem. Soc. 2013, 135, 15479.
[45]
Turner, Z. R.; Bellabarba, R.; Tooze, R. P.; Arnold, P. L. J. Am. Chem. Soc. 2010, 132, 4050.
[46]
Dong, Y.; Chang, K.; Xu, X. Chin. J. Chem. 2020, 38, 559.
[47]
Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479.
[48]
Chen, E. Y.-X. Chem. Rev. 2009, 109, 5157.
[49]
Liu, B.; Qiao, K.; Fang, J.; Wang, T.; Wang, Z.; Liu, D.; Xie, Z.; Maron, L.; Cui, D. Angew. Chem. Int. Ed. 2018, 57, 14896.
[50]
Liu, D.; Wang, M.; Chai, Y.; Wan, X.; Cui, D. ACS Catal. 2019, 9, 2618.
[51]
Nishiura, M.; Hou, Z. Nat. Chem. 2010, 2, 257.
[52]
Yasuda, H.; Yamamoto, H.; Yokota, K.; Miyake, S.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 4908.
[53]
Yasuda, H. J. Organomet. Chem. 2002, 647, 128.
[54]
Zhang, Y.; Miyake, G. M.; Chen, E. Y. -X. Angew. Chem. Int. Ed. 2010, 49, 10158.
[55]
Knaus, M. G. M.; Giuman, M. M.; Pöthig, A.; Rieger, B. J. Am. Chem. Soc. 2016, 138, 7776.
[56]
Bai, Y.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2018, 57, 17230.
[57]
Wang, X, -J.; Hong, M. Angew. Chem. Int. Ed. 2020, 59, 2664.
[58]
Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Dalton. Trans. 2012, 41, 9119.
[59]
Zhou, Y.; Jiang, S.; Xu, X. Chin. J. Chem. 2021, 39, 149.
[60]
Xu, P.; Xu, X. ACS Catal. 2018, 8, 198.
[61]
Xu, P.; Wu, L.; Dong, L.; Xu, X. Molecules 2018, 23, 360.
[62]
Zhao, Y.; Luo, G.; Xu, X.; Hou, Z.; Luo, Y. Inorg. Chem. Front. 2020, 7, 4600.
[63]
Kennemur, J. G. Macromolecules 2019, 52, 1354.
[64]
Weger, M.; Giuman, M. M.; Knaus, M. G.; Ackermann, M.; Drees, M.; Hornung, J.; Altmann, P. J.; Fischer, R. A.; Rieger, B. Chem. Eur. J. 2018, 24, 14950.
[65]
Scherpf, T.; Schwarz, C.; Scharf, L. T.; Zur, J.-A.; Helbig, A.; Gessner, V. H. Angew. Chem. Int. Ed. 2018, 57, 12859.
[66]
Su, Y.; Zhao, Y.; Zhang, H.; Luo, Y.; Xu, X. Macromolecules 2021, 54, 7724.
[67]
Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213.
[68]
Süss-Fink, G.; Reiner, J. J. Organomet. Chem. 1981, 221, C36.
[69]
Chen, J.; McGraw, M.; Chen, E. Y. -X. ChemSusChem 2019, 12, 4543.
[70]
Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. Chem. Sci. 2013, 4, 2152.
[71]
Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. J. Am. Chem. Soc. 2012, 134, 10843.
[72]
Chang, K.; Rosal, I.; Zheng, X.; Maron, L.; Xu, X. Dalton Trans. 2021, 50, 7804.
[73]
Park, S.; Be?zier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.
文章导航

/