研究论文

可见光-铜共催化的糖类区域选择性氧烷基化反应

  • 孙天义 ,
  • 张依凡 ,
  • 孟远倢 ,
  • 王怡 ,
  • 朱琦峰 ,
  • 姜玉新 ,
  • 刘石惠
展开
  • 嘉兴学院医学院 浙江嘉兴 314001

收稿日期: 2021-12-22

  修回日期: 2022-01-18

  网络出版日期: 2022-02-18

基金资助

国家自然科学基金青年基金(22001096); 浙江省自然科学基金(LQ21B020008); 嘉兴学院启动经费(CD70519040); 嘉兴学院“百青”培养人才(CD70621018)

Photoredox-Copper Dual-Catalyzed Site-Selective O-Alkylation of Glycosides

  • Tianyi Sun ,
  • Yifan Zhang ,
  • Yuanjie Meng ,
  • Yi Wang ,
  • Qifeng Zhu ,
  • Yuxin Jiang ,
  • Shihui Liu
Expand
  • College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001

Received date: 2021-12-22

  Revised date: 2022-01-18

  Online published: 2022-02-18

Supported by

National Natural Science Foundation of China(22001096); Natural Science Foundation of Zhejiang Province(LQ21B020008); Start up Funds of Jiaxing University(CD70519040); Jiaxing University “Hundred Youth” Training Talents(CD70621018)

摘要

报道了一种可见光/铜共催化的糖类和苄基碳氢键底物的交叉脱氢偶联反应. 该方法反应条件温和, 起始原料廉价易得, 能以极高的区域选择性和27%~72%的收率合成了一系列糖类羟基的烷基化产物, 为糖类的选择性修饰提供一种新型的方法.

本文引用格式

孙天义 , 张依凡 , 孟远倢 , 王怡 , 朱琦峰 , 姜玉新 , 刘石惠 . 可见光-铜共催化的糖类区域选择性氧烷基化反应[J]. 有机化学, 2022 , 42(5) : 1414 -1422 . DOI: 10.6023/cjoc202112029

Abstract

A photoredox-copper dual-catalyzed cross dehydrogenative coupling reaction of glycosides with benzylic C—H substrates has been developed. The reaction proceeds smoothly under mild reaction conditions and features the using of readily accessible starting materials, which allows the highly site-selective synthesis of diverse glycosides O-alkylation products in 27%~72% yields, providing a new synthetic tool for the site-selective modification of glycosides.

参考文献

[1]
(a) Seeberger, P. H.; Werz, D. B. Nature 2007, 446, 1046.
[1]
(b) Elshahawi, S. I.; Shaaban, K. A.; Kharel, M. K.; Thorson, J. S. Chem. Soc. Rev. 2015, 44, 7591.
[1]
(c) Varki, A. Glycobiology 2017, 27, 3.
[1]
(d) Wei, M.; Wang, Y.; Ye, X. Med. Res. Rev. 2018, 38, 1003.
[2]
(a) Wei, L.; Hu, F.; Chen, Z.; Shen, Y.; Zhang, L.; Min, W. Acc. Chem. Res. 2016, 49, 1494.
[2]
(b) Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X. Chem. Rev. 2016, 116, 3086.
[3]
(a) Dimakos, V.; Taylor, M. S. Chem. Rev. 2018, 118, 11457.
[3]
(b) Leng, W.; Yao, H.; He, J.; Liu, X. Acc. Chem. Res. 2018, 51, 628.
[3]
(c) Wang, H.; Blaszczyk, S. A.; Xiao, G.; Tang, W. Chem. Soc. Rev. 2018, 47, 681.
[3]
(d) Nielsen, M. M.; Pedersen, C. M. Chem. Rev. 2018, 118, 8285.
[3]
(e) Blaszczyk, S. A.; Homan, T.; Tang, W. Carbohydr. Res. 2019, 471, 64.
[3]
(f) Shang, W.; He, H.; Niu, D. Carbohydr. Res. 2019, 474, 16.
[3]
(g) Báti, G.; He, J.; Pal, K. B.; Liu, X. Chem. Soc. Rev. 2019, 48, 4006.
[4]
(a) Crich, D.; Vinogradova, O. J. Org. Chem. 2007, 72, 6513.
[4]
(b) Giordano, M.; Iadonisi, A. J. Org. Chem. 2014, 79, 213.
[4]
(c) Xu, H. Lu, Y.; Zhou, Y.; Ren, B.; Pei, Y.; Dong, H.; Pei, Z. Adv. Synth. Catal. 2014, 356, 1735.
[4]
(d) Saikam, V.; Dara, S.; Yadav, M.; Singh, P.; Vishwakarma, R. A. J. Org. Chem. 2015, 80, 11916.
[4]
(e) Xu, H.; Zhang, Y.; Dong, H.; Lu, Y.; Pei, Y.; Pei, Z. Tetrahedron Lett. 2017, 58, 4039.
[5]
(a) Gridley, J. J.; Osborn, H. M. I.; Suthers, W. G. Tetrahedron Lett. 1999, 40, 6991.
[5]
(b) Osborn, H. M. I.; Brome, V. A.; Harwood, L. M.; Suthers, W. G. Carbohydr. Res. 2001, 332, 157.
[5]
(c) Ren, B.; Wang, J.; Zhang, M.; Chen, Y.; Zhao, W. Adv. Synth. Catal. 2022, 364, 665.
[6]
Gangadharmath, U. B.; Demchenko, A. V. Synlett 2004, 2191.
[7]
Malik, S.; Dixit, V. A.; Bharatam, P. V.; Kartha, K. P. R. Carbohydr. Res. 2010, 345, 559.
[8]
(a) Ren, B.; Ramstro?m, O.; Zhang, Q.; Ge, J.; Dong, H. Chem.-Eur. J. 2016, 22, 2481.
[8]
(b) Ren, B.; Yan, N.; Gan, L. RSC Adv. 2017, 7, 46257.
[8]
(c) Ren, B.; Lv, J.; Zhang, Y.; Tian, J.; Dong, H. ChemCatChem 2017, 9, 950.
[9]
(a) Oshima, K.; Kitazono, E.-I.; Aoyama, Y. Tetrahedron Lett. 1997, 38, 5001.
[9]
(b) Chan, L.; Taylor, M. S. Org. Lett. 2011, 13, 3090.
[9]
(c) Dimitrijevic, E.; Taylor, M. S. Chem. Sci. 2013, 4, 3298.
[10]
(a) Li, R.-Z.; Tang, H.; Wan, L.; Zhang, X.; Fu, Z.; Liu, J.; Yang, S.; Jia, D.; Niu, D. Chem 2017, 3, 834.
[10]
(b) Li, R.-Z.; Tang, H.; Yang, K. R.; Wan, L.-Q.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Angew. Chem., Int. Ed. 2017, 56, 7213.
[11]
(a) Li, X.; Liu, Q. Chin. J. Org. Chem. 2021, 41, 863. (in Chinese)
[11]
(李祥盛, 刘强, 有机化学, 2021, 41, 863.)
[11]
(b) Dai, P.; Xu, L. Chin. J. Org. Chem. 2021, 41, 4690. (in Chinese)
[11]
(代鹏程, 徐亮, 有机化学, 2021, 41, 4690.)
[11]
(c) Dong, K.; Liu, Q.; Wu, L.-Z. Acta Chim. Sinica 2020, 78, 299. (in Chinese)
[11]
(董奎, 刘强, 吴骊珠, 化学学报, 2020, 78, 299.)
[11]
(d) Zhang, H.-H.; Yu, S. Acta Chim. Sinica 2019, 77, 832. (in Chinese)
[11]
(张洪浩, 俞寿云, 化学学报, 2019, 77, 832.)
[12]
Dong, M.; Jia, Y.; Zhou, W.; Gao, J.; Lv, X.; Luo, F.; Zhang, Y.; Liu, S. Org. Chem. Front. 2021, 8, 6881.
[13]
(a) Lee, B. J.; DeGlopper, K. S.; Yoon, T. P. Angew. Chem., Int. Ed. 2020, 59, 197.
[13]
(b) Hu, H.; Chen, S.-J.; Mandal, M.; Pratik, S. M.; Buss, J. A.; Krska, S. W.; Cramer, C. J.; Stahl, S. S. Nat. Catal. 2020, 3, 358.
文章导航

/