综述与进展

C(sp3)—H键直接催化硅基化反应研究进展

  • 程异 ,
  • 胡荣静 ,
  • 陈晓琪 ,
  • 杨浩 ,
  • 牛晓康 ,
  • 杨磊
展开
  • 杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121

收稿日期: 2021-09-13

  修回日期: 2021-10-06

  网络出版日期: 2022-02-24

基金资助

杭州市西湖学者计划和杭州师范大学科研启动经费(2019DL018)

Recent Progress in Direct Catalytic C(sp3)—H Silylation Reactions

  • Yi Cheng ,
  • Rongjing Hu ,
  • Xiaoqi Chen ,
  • Hao Yang ,
  • Xiaokang Niu ,
  • Lei Yang
Expand
  • Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121
* Corresponding authors. E-mail: ;

Received date: 2021-09-13

  Revised date: 2021-10-06

  Online published: 2022-02-24

Supported by

Xihu Scholar Program and the Start-Up Grant from Hangzhou Normal University(2019DL018)

摘要

含C(sp3)—Si键的有机硅化合物在材料科学、药物化学和精细化学品合成等研究领域有着广泛的应用. 通过C(sp3)—H的直接催化硅基化形成C(sp3)—Si键具有高的原子经济性和步骤经济性特点, 近些年已成为含C(sp3)—Si键的新型有机硅分子合成领域的一个研究热点. 详细总结了C(sp3)—H键直接催化硅基化反应的研究进展, 并探讨了相关反应的机理和应用范围.

本文引用格式

程异 , 胡荣静 , 陈晓琪 , 杨浩 , 牛晓康 , 杨磊 . C(sp3)—H键直接催化硅基化反应研究进展[J]. 有机化学, 2022 , 42(2) : 323 -343 . DOI: 10.6023/cjoc202109017

Abstract

Organosilicon compounds containing C(sp3)—Si bonds are widely used in many research fields, such as material science, pharmaceutical chemistry and fine chemical synthesis. In recent years, due to its high atomic economy and step economy properties, the direct catalytic silylation of C(sp3)—H bonds to form C(sp3)—Si bonds has become one of the research hotspots in the syntheis of new organosilicones containing C(sp3)—Si bonds. The research progress of direct catalytic silylation of C(sp3)—H bonds is summarized in detail, and the mechanism and application range of related silylation reactions are also discussed.

参考文献

[1]
(a) Min, E.-Z.; Wu, W. Green Chemistry and Chemical Engineering, Chemical Industry Press Co. Ltd., Beijing, 2000. (in Chinese)
[1]
( 闵恩泽, 吴巍, 绿色化学与化工, 化学工业出版社, 北京, 2000.)
[1]
(b) Ma, S.-M.; Wei, X.-F. Atom Economical Organic Reactions, China Petrochemical Press Co. Lid., Beijing, 2006. (in Chinese)
[1]
( 麻生明, 魏晓芳, 原子经济性反应, 中国石化出版社, 北京, 2006.)
[2]
(a) Yu, J.-Q.; Shi, Z.-J. Topics in Current Chemistry, Springer, Berlin, 2010, Vol. 292.
[2]
(b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
[2]
(c) Hartwig, J. F.; Larsen, M. A. ACS Cent. Sci. 2016, 2, 281.
[2]
(d) Xu, Y.; Dong, G. Chem. Sci. 2018, 9, 1424.
[2]
(e) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603.
[3]
(a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
[3]
(b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.-Eur. J. 2010, 16, 2654.
[3]
(c) Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1, 191.
[4]
(a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
[4]
(b) Chen, Z.; Rong, M.-Y.; Nie, J.; Zhu, X.-F.; Shi, B.-F.; Ma, J.-A. Chem. Soc. Rev. 2019, 48, 4921.
[4]
(c) Huang, H.; Li, T.; Wang, J.; Qin, G.; Xiao, T. Chin. J. Org. Chem. 2019, 39, 1511. (in Chinese)
[4]
( 黄鸿泰, 李涛, 王家状, 秦贵平, 肖铁波, 有机化学, 2019, 39, 1511.)
[4]
(d) Das, J.; Guin, S.; Maiti, D. Chem. Sci. 2020, 11, 10887.
[4]
(e) Zhang, Q.; Shi, B.-F. Chem. Sci. 2021, 12, 841.
[4]
(f) Mingo, M. M.; Rodríguez., ; Arrayás, R. G.; Carretero, J. C. Org. Chem. Front. 2021, 8, 4914.
[5]
(a) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
[5]
(b) Jones, R. G.; Ando, W.; Chojnowski, J. Silicon-Containing Polymers, Springer, Berlin, 2000.
[5]
(c) Showell, G. A.; Mills, J. S. Drug Discovery Today 2003, 8, 551.
[5]
(d) Franz, A. K. Curr. Opin. Drug Discovery Dev. 2007, 10. 654.
[5]
(e) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388.
[5]
(f) Fujii, S.; Hashimoto, Y. Future Med. Chem. 2017, 9, 485.
[5]
(g) Ramesh, R.; Reddy, D. S. J. Med. Chem. 2018, 61, 3779.
[5]
(h) Sarai, N. S.; Levin, B. J.; Roberts, J. M.; Katsoulis, D. E.; Arnold, F. H. ACS Cent. Sci. 2021, 7, 944.
[5]
(i) Zuo, Y.; Gou, Z.; Quan, W.; Lin, W. Coord. Chem. Rev. 2021, 438, 213887.
[6]
(a) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000.
[6]
(b) Bähr, S.; Xue, W.; Oestreich, M. ACS Catal. 2019, 9, 16.
[7]
(a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
[7]
(b) Sharma, R.; Kumar, R.; Kumar, I.; Singh, B.; Sharma, U. Synthesis 2015, 2347.
[7]
(c) Yang, Y.; Wang, C. Sci. China: Chem. 2015, 58, 1266.
[7]
(d) Hartwig, J. F.; Romero, E. A. Tetrahedron 2019, 75, 4059.
[7]
(e) Zhou, B.; Lu, A.; Zhang, Y. Synlett 2019, 30, 685.
[7]
(f) Richter, S. C.; Oestreich, M. Trends Chem. 2020, 2, 13.
[7]
(g) Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2021, 50, 5062.
[8]
(a) Mo, F.; Tabor, J. R.; Dong, G. Chem. Lett. 2014, 43, 264.
[8]
(b) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44, 7764.
[9]
Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70.
[10]
Parija, A.; Sunoj, R. B. Org. Lett. 2013, 15, 4066.
[11]
Mita, T.; Michigami, K.; Sato, Y. Org. Lett. 2012, 14, 3462.
[12]
Mita, T.; Michigami, K.; Sato, Y. Chem.-Asian J. 2013, 8, 2970.
[13]
Frihed, T. G.; Heuckendorff, M.; Pedersen, C. M.; Bols, M. Angew. Chem., Int. Ed. 2012, 51, 12285.
[14]
Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 6586.
[15]
(a) Wang, J. Stereoselective Alkene Synthesis, Springer Verlag, Heidelberg, New York, 2012.
[15]
(b) Zhang, J.; Lu, X.; Shen, C.; Xu, L.; Ding, L.; Zhong, G. Chem. Soc. Rev. 2021, 50, 3263.
[16]
Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.; Gevorgyan, V. Nat. Chem. 2014, 6, 122.
[17]
Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154
[18]
Li, Q.; Driess, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 8471.
[19]
Marciniec, B. Coord. Chem. Rev. 2005, 249, 2374.
[20]
Jia, X.; Huang, Z. Nat. Chem. 2016, 8, 157.
[21]
(a) Fukumoto, Y.; Hirano, M.; Chatani, N. ACS Catal. 2017, 7, 3152.
[21]
(b) Fukumoto, Y.; Hirano, M.; Matsubara, N.; Chatani, N. J. Org. Chem. 2017, 82, 13649.
[22]
Hirano, M.; Fukumoto, Y.; Matsubara, N.; Chatani, N. Chem. Lett. 2018, 47, 385.
[23]
Su, B.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 12137.
[24]
Zhang, M.; Liang, J.; Huang, G. J. Org. Chem. 2019, 84, 2372.
[25]
Bunescu, A.; Butcher, T. W.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1502.
[26]
He, C.; Whitehurst, W. G.; Gaunt, M. J. Chem 2019, 5, 1031.
[27]
Su, B.; Lee, T.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 18032.
[28]
Yan, Z.-B.; Peng, M.; Chen, Q.-L.; Lu, K.; Tu, Y.-Q.; Dai, K.-L.; Zhang, F.-M.; Zhang, X.-M. Chem. Sci. 2021, 12, 9748.
[29]
Kakiuchi, F.; Tsuchiya, K.; Matsumoto, M.; Mizushima, E.; Chatani, N. J. Am. Chem. Soc. 2004, 126, 12792.
[30]
Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666.
[31]
Kon, K.; Suzuki, H.; Takada, K.; Kohari, Y.; Namikoshi, T.; Watanabe, S.; Murata, M. ChemCatChem 2016, 8, 2202.
[32]
Liu, S.; Lin, Q.; Liao, C.; Chen, J.; Zhang, K.; Liu, Q.; Li, B. Org. Biomol. Chem. 2019, 17, 4115.
[33]
van Koten, G.; Milstein, D. Organometallic Pincer Chemistry, Springer Berlin, Heidelberg, 2013.
[34]
Fang, H.; Hou, W.; Liu, G.; Huang Z. J. Am. Chem. Soc. 2017, 139, 11601.
[35]
Wen, J.; Dong, B.; Zhu, J.; Zhao, Y.; Shi, Z. Angew. Chem., Int. Ed. 2020, 59, 10909.
[36]
Sakakura, T.; Tokunaga, Y.; Sodeyama, T.; Tanaka, M. Chem. Lett. 1987, 2375.
[37]
Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am. Chem. Soc. 2010, 132, 14324.
[38]
Kuninobu, Y.; Nakahara, T.; Takeshima, H.; Takai, K. Org. Lett. 2013, 15, 426.
[39]
Murai, M.; Takeshima, H.; Morita, H.; Kuninobu, Y.; Takai, K. J. Org. Chem. 2015, 80, 5407.
[40]
Hua, Y.; Jung, S.; Roh, J.; Jeon, J. J. Org. Chem. 2015, 80, 4661.
[41]
Lee, T.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 8723.
[42]
Karmel, C.; Li, B.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1460.
[43]
Xu, L.-W. In Organosilicon Compounds: From Theory to Synthesis to Applications, Ed.: Lee, V. Y., Elsevier, London, 2017, Vol. 1, pp 145-194.
[44]
(a) Yang, B.; Yang, W.; Guo, Y.; You, L.; He, C. Angew. Chem., Int. Ed. 2020, 59, 22217.
[44]
(b) Guo, Y.; Liu, M.-M.; Zhu, X.; Zhu, L.; He, C. Angew. Chem., Int. Ed. 2021, 60, 13887.
[45]
Xiao, P.; Gao, L.; Song, Z. Chem.-Eur. J. 2019, 25, 2407.
[46]
(a) Larsson, J. M.; Zhao, T. S. N.; Szabó, K. J. Org. Lett. 2011, 13, 1888.
[46]
(b) Nakai, S.; Matsui, M.; Shimizu, Y.; Adachi, Y.; Obora, Y. J. Org. Chem. 2015, 80, 7317.
[47]
Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968.
[48]
Chen, C.; Guan, M.; Zhang, J.; Wen, Z.; Zhao, Y. Org. Lett. 2015, 17, 3646.
[49]
Liu, Y.-J.; Liu, Y.-H.; Zhang, Z.-Z.; Yan, S.-Y.; Chen, K.; Shi, B.-F. Angew. Chem., Int. Ed. 2016, 55, 13859.
[50]
Pan, J.-L.; Li, Q.-Z.; Zhang, T.-Y.; Hou, S.-H.; Kang, J.-C.; Zhang, S.-Y. Chem. Commun. 2016, 52, 13151.
[51]
Deb, A.; Singh, S.; Seth, K.; Pimparkar, S.; Bhaskararao, B.; Guin, S.; Sunoj, R. B.; Maiti, D. ACS Catal. 2017, 7, 8171.
[52]
Lu, A.; Ji, X.; Zhou, B.; Wu, Z.; Zhang, Y. Angew. Chem.,Int. Ed. 2018, 57, 3233.
[53]
Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Chem. Rev. 2016. 116. 11654.
[54]
Zhan, B.-B.; Fan, J.; Jin, L.; Shi, B.-F. ACS Catal. 2019, 9, 3298.
[55]
Li, J.; Jiang, C. Org. Lett. 2021, 23, 5359.
[56]
Tsukada, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 5022.
[57]
Liu, J.; Zhang, W.; Xi, Z. Chin. J. Org. Chem. 2009, 29, 491. (in Chinese)
[57]
( 刘俊辉, 张文雄, 席振峰, 有机化学, 2009, 29, 491.)
[58]
Ishikawa, M.; Okazaki, S.; Naka, A.; Sakamoto, H. Organometallics 1992, 11, 4135.
[59]
(a) Baba, T.; Kato, A.; Yuasa, H.; Toriyama, F.; Handa, H.; Ona, Y. Catal. Today 1998, 44, 271.
[59]
(b) Toutov, A. A.; Liu, W.-B.; Betz, K. M.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80.
[60]
Harder, S. Chem. Rev. 2010, 110, 3852.
[61]
Zhao, L. X.; Shi, X. H.; Cheng, J. H. ACS Catal. 2021, 11, 2041.
[62]
(a) Zhang, J.; Park, S.; Chang, S. J. Am. Chem. Soc. 2018, 140, 13209.
[62]
(b) Zhou, M.; Park, S.; Dang, L. Org. Chem. Front. 2020, 7, 944.
[62]
(c) Zhang, J.; Chang, S. J. Am. Chem. Soc. 2020, 142, 12585.
[63]
Fang, H.; Xie, K.; Kemper, S.; Oestreich, M. Angew. Chem., Int. Ed. 2021, 60, 8542.
[64]
Ihara, H.; Ueda, A.; Suginome, M. Chem. Lett. 2011, 40, 916.
[65]
Liu, P.; Tang, J.; Zeng, X. Org. Lett. 2016, 18, 5536.
[66]
Feng, J.-J.; Oestreich, M. Org. Lett. 2018, 20, 4273.
[67]
Zhang, X.; Geng, P.; Liu, G.; Huang, Z. Organometallics 2021, 40, 2365.
[68]
Luo, Y.; Teng, H.-L.; Xue, C.; Nishiura, M.; Hou, Z. ACS Catal. 2018, 8, 8027.
[69]
Gentle, T. M.; Muetterties, E. L. J. Am. Chem. Soc. 1983, 105, 304.
[70]
(a) Procopio, L. J.; Berry, D. H. J. Am. Chem. Soc. 1991, 113, 4039.
[71]
( b, Djurovich, P. I.; Dolich, A. R.; Berry, D. H. J. Chem. Soc. Chem. Commun. 1994, 1897. (c) Ezbiansky, K.; Djurovich, P. I.; LaForest, M.; Sinning, D. J. Zayes, R.; Berry, D. H. Organometallics 1998, 17, 1455.
[72]
Murai, M.; Takeuchi, Y.; Takai, K. Chem. Lett. 2017, 46, 1044.
[73]
Gunsalus, N. J.; Koppaka, A.; Park, S. H.; Bischof, S. M.; Hashiguchi, B. G.; Periana, R. A. Chem. Rev. 2017, 117, 8521.
[74]
(a) Sadow, A. D.; Tilley, T. D. Angew. Chem., Int. Ed. 2003, 42, 803.
[74]
(b) Sadow, A. D.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 643.
文章导航

/