氮宾/炔烃复分解串联反应研究进展
收稿日期: 2021-09-22
修回日期: 2021-10-18
网络出版日期: 2022-02-24
基金资助
国家自然科学基金(21971262); 国家自然科学基金(92056201); 广东省手性分子与药物发现重点实验室(2019B030301005); 广东省珠江创新团队(2016ZT06Y337)
Recent Advances in Nitrene/Alkyne Metathesis Cascade Reaction
Received date: 2021-09-22
Revised date: 2021-10-18
Online published: 2022-02-24
Supported by
National Natural Science Foundation of China(21971262); National Natural Science Foundation of China(92056201); Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery(2019B030301005); Guangdong Introducing Innovative and Entrepreneurial Teams(2016ZT06Y337)
在过去的几十年中, 氮宾催化转化作为一类直接构建C—N键的高效反应得到了飞速发展, 并被广泛应用于含氮杂环化合物的合成. 虽然已有多种类型的氮宾前体被报道, 并通过各类催化转化反应在构建结构多样性杂环化合物分子中起到了至关重要的作用, 然而, 氮宾的反应类型还是局限于胺化反应、氮杂环丙烷化反应、磺化反应等有限的几类反应. 基于氮宾前体、催化策略(或者催化剂)以及复杂分子合成的相关综述已有很多报道, 这篇综述聚焦氮宾与炔烃的加成反应, 主要是氮宾/炔烃复分解串联反应. 这类反应可以快速合成具有结构多样性的多环、稠环和螺环类含氮杂环类化合物.
洪科苗 , 黄晶晶 , 姚铭瀚 , 徐新芳 . 氮宾/炔烃复分解串联反应研究进展[J]. 有机化学, 2022 , 42(2) : 344 -352 . DOI: 10.6023/cjoc202109035
Catalytic nitrene transformations to N-containing molecules through direct C—N bond formation have experienced a dramatic development in the last decades. Although a variety of nitrene precursors have been disclosed under the corresponding catalytic conditions, which play a principal role in the synthesis of nitrogen-containing molecules with structural complexity, the types of nitrene transfer reactions mainly limited to the amination, aziridination, sulfimidation, and few others. In this area, reviews focused on different nitrene precursors, catalytic strategy (or metal catalysts), and challenging synthesis have been well-documented. In this review, the catalytic approaches of nitrene addition with alkynes, mainly nitrene/alkyne metathesis cascade reactions are outlined, which provide expeditious access to polycyclic, fused, and spiro N-heterocycles with structural diversity.
Key words: nitrene; α-imino carbene; N-heterocycle; nitrene/alkyne metathesis; cascade reaction
| [1] | Tiemann, F. Ber. Dtsch. Chem. Ges. 1891, 24, 4162. |
| [2] | (a) Egger, J.; Carreira, E. M. Nat. Prod. Rep. 2014, 31, 449. |
| [2] | (b) Darses, B.; Rodrigues, R.; Neuville, L.; Mazurais, M.; Dauban, P. Chem. Commun. 2017, 53, 493. |
| [2] | (c) Hazelard, D.; Nocquet, P.-A.; Compain, P. Org. Chem. Front. 2017, 4, 2500. |
| [2] | (d) Zhang, J.; Pérez-Temprano, M. H. Chimia 2020, 74, 895. |
| [3] | (a) Smith, P. A. S.; Brown, B. B. J. Am. Chem. Soc. 1951, 73, 2435. |
| [3] | (b) Smith, P. A. S.; Clegg, J. M.; Hall, J. H. J. Org. Chem. 1958, 23, 524. |
| [4] | (a) Lwowski, W.; Mattingly, T. W. Tetrahedron Lett. 1962, 3, 277. |
| [4] | (b) Lwowski, W.; Mattingly, T. W. J. Am. Chem. Soc. 1965, 87, 1947. |
| [5] | (a) Sloan, M. F.; Renfrow, W. B.; Breslow, D. S. Tetrahedron Lett. 1964, 5, 2905. |
| [5] | (b) Breslow, D. S.; Sloan, M. F.; Newburg, N. R.; Renfrow, W. B. J. Am. Chem. Soc. 1969, 91, 2273. |
| [6] | (a) Smolinsky, G. J. Am. Chem. Soc. 1960, 82, 4717. |
| [6] | (b) ApSimon, J. W.; Edwards, O. E. Can. J. Chem. 1962, 40, 896. |
| [6] | (c) Masamune, S. J. Am. Chem. Soc. 1964, 86, 290. |
| [6] | (d) Anastassiou, A. G.; Simmons, H. E.; Marsh, F. D. J. Am. Chem. Soc. 1965, 87, 2296. |
| [7] | Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 89, 1951. |
| [8] | Ullman, E. F.; Singh, B. J. Am. Chem. Soc. 1966, 88, 1844. |
| [8] | (b) Nunes, C. M.; Reva, I.; Melo, T. M. V. D. P. E.; Fausto, R. J. Org. Chem. 2012, 77, 8723. |
| [9] | Sauer, J.; Mayer, K. K. Tetrahedron Lett. 1968, 9, 319. |
| [10] | Sauer, J.; Mayer, K. K. Tetrahedron Lett. 1968, 3, 325. |
| [11] | Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett. 1975, 361. |
| [12] | (a) Breslow, R.; Gellman, S. H. J. Chem. Soc. Chem. Commun. 1982, 1400. |
| [12] | (b) Breslow, R.; Gellman, S. H. J. Am. Chem. Soc. 1983, 105, 6728. |
| [13] | Mansuy, D.; Mahy, J.-P.; Dureault, A.; Bedi, G.; Battioni, P. J. Chem. Soc., hem. Commun. 1984, 1161. |
| [14] | (a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 5328. |
| [14] | (b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742. |
| [15] | Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326. |
| [16] | Müller, P.; Baud, C.; Jacquier, Y. Tetrahedron 1996, 52, 1543. |
| [17] | Yu, X.-Q.; Huang, J.-S.; Zhou, X.-G.; Che, C.-M. Org. Lett. 2000, 2, 2233. |
| [18] | Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935. |
| [19] | Dauban, P.; Sanière, L.; Tarrade, A.; Dodd, R. J. Am. Chem. Soc. 2001, 123, 7707. |
| [20] | (a) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem., Int. Ed. 2012, 51, 7384. |
| [20] | (b) Wentrup, C. Angew. Chem. Int. Ed. 2018, 57, 11508. |
| [20] | (c) Chu, J. C. K.; Rovis, T. Angew. Chem. Int. Ed. 2018, 57, 62. |
| [20] | (d) Trowbridge, A.; Scarlett, S. M.; Gaunt, M. L. Chem. Rev. 2020, 120, 2613. |
| [21] | (a) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831. |
| [21] | (b) Intrieri, D.; Zardi, P.; Caselli, A.; Gallo, E. Chem. Commun. 2014, 50, 11440. |
| [21] | (c) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. |
| [22] | (a) Shimbayashi, T.; Sasakura, K.; Eguchi, A.; Okamoto, K.; Ohe, K. Chem. Eur. J. 2019, 25, 3156. |
| [22] | (b) Van Vliet, K. M.; Bruin, B. ACS Catal. 2020, 10, 4751. |
| [23] | Green, M.; Mercer, R. J.; Morton, C. E.; Orpen, A. G. Angew. Chem. Int. Ed. Engl. 1985, 24, 422. |
| [24] | Okamoto, K.; Oda, T.; Kohigashi, S.; Ohe, K. Angew. Chem. Int. Ed. 2011, 50, 11470. |
| [25] | Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429. |
| [26] | Wang, Y.-C.; Lai, X.-J.; Huang, K.; Yadav, S.; Qiu, G.; Zhang, L.; Zhou, H. Org. Chem. Front. 2021, 8, 1677. |
| [27] | (a) Mondal, R. R.; Khamarui, S.; Maiti, D. K. Org. Lett. 2017, 19, 5964. |
| [27] | (b) Deng, T. N.; Mazumdar, W.; Ford, R. L.; Jana, N.; Izar, R.; Wink, D. J.; Driver, T. G. J. Am. Chem. Soc. 2020, 142, 4456. |
| [28] | Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676. |
| [29] | Liu, G.; Zhang, Y.; Yuan, Y.; Xu, H. J. Am. Chem. Soc. 2013, 135, 3343. |
| [30] | (a) McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. A. Angew. Chem., Int. Ed. 2013, 52, 9309. |
| [30] | (b) Mahy, J.-P.; Ciesielski, J.; Dauban, P. Angew. Chem., Int. Ed. 2014, 53, 6862. |
| [30] | (c) Singh, R.; Bordeaux, M.; Fasan, R. ACS Catal. 2014, 4, 546. |
| [30] | (d) Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.; Arnold, F. H. Nat. Chem. 2017, 9, 629. |
| [30] | (e) Yang, Y.; Cho, I.; Qi, X.; Liu, P.; Arnold, F. A. Nat. Chem. 2019, 11, 987. |
| [31] | (a) Gephart, R. T.; III.; Warren, T. H. Organometallics 2012, 31, 7728. |
| [31] | (b) Rodríguez, M. R.; Díaz-Requejo, M. M.; Pérez, P. J. Synlett 2021, 32, 763. |
| [32] | Nägeli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; Müller, P. Helv. Chim. Acta 1997, 80, 1087. |
| [33] | (a) Plietker, B.; Röske, A. Catal. Sci. Technol. 2019, 9, 4188. |
| [33] | (b) Wang, P.; Deng, L. Chin. J. Chem. 2018, 36, 1222. |
| [34] | Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983, 105, 2073. |
| [35] | Cenini, S.; Tollari, S.; Penoni, A.; Cereda, C. J. Mol. Catal. A 1999, 137, 135. |
| [36] | For review: a Intrieri, D.; Carminati, D. M.; Gallo, E. J. Porphyrins Phthalocyanines 2016, 20, 190. |
| [36] | Selected recent advance: |
| [36] | (b) Leest, N. P.; Vliet, K. M.; Bruin, B. Chem 2020, 6, 1851. |
| [37] | (a) Kuijpers, P. F.; Tiekink, M. J.; Breukelaar, W. B.; Broere, D. L. J.; Leest, N. P.; Vlugt, J. I.; Reek, J. N. H.; Bruin, B. Chem. Eur. J. 2017, 23, 7945. |
| [37] | (b) Li, C.-Q.; Lang, K.; Lu, H. J.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2018, 57, 16837. |
| [37] | (c) Hu, Y.; Lang, K.; Li, C.; Gill, J. B.; Kim, I.; Lu, H.; Fields, K. B.; Marshall, M.; Cheng, Q.; Cui, X.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2019, 141, 18160. |
| [38] | For reviews: a Alderson, J. M.; Corbin, J. R.; Schomaker, J. M. Acc. Chem. Res. 2017, 50, 2147. |
| [38] | (b) Zhang, J.; Shan, C.; Zhang, T.; Song, J.; Liu, T.; Lan, Y. Coord. Chem. Rev. 2019, 382, 69. |
| [38] | Pioneering work and selected examples: |
| [38] | (c) Cui, Y.; He, C. J. Am. Chem. Soc. 2003, 125, 16202. |
| [38] | (d) Llaveria, J.; Beltrán, Á.; Sameera, W. M. C.; Locati, A.; DíazRequejo, M. M.; Matheu, M. I.; Castillón, S.; Maseras, F.; Pérez, P. J. J. Am. Chem. Soc. 2014, 136, 5342. |
| [38] | (e) Rigoli, J. W.; Weatherly, C. D.; Alderson, J. M.; Vo, B. T.; Schomaker, J. M. J. Am. Chem. Soc. 2013, 135, 17238. |
| [38] | (f) Annapureddy, R. R.; Jandl, C.; Bach, T. J. Am. Chem. Soc. 2020, 142, 7374. |
| [39] | Other metal catalysts: For Zn: a Breslow, D. S.; Sloan, M. F. Tetrahedron Lett. 1968, 5349. |
| [39] | For, Pd: |
| [39] | (b) Migita, T.; Chiba, T.; Takahashi, K.; Siatoh, N.; Nkaido, S.; Kosugi, M. Bull. Chem. Soc. Jpn 1982, 55, 3943. |
| [39] | (c) Broere, D. L. J.; Bruin, B.; Reek, J. N. H.; Lutz, M.; Dechert, S.; Vlugt, J. I. J. Am. Chem. Soc. 2014, 136, 11574. |
| [39] | For Ta and Zr: |
| [39] | (d) Heyduk, A. F.; Zarkesh, R. A.; Nguyen, A. I. Inorg. Chem. 2011, 50, 9849. |
| [40] | (a) Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935. |
| [40] | (b) Espino, C. G.; Du Bois, J. Angew. Chem., Int. Ed. 2001, 40, 598. |
| [40] | (c) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res. 2012, 45, 911. |
| [41] | Thacker, N. C.; Lin, Z.; Zhang, T.; Gilhula, J. C.; Abney, C. W.; Lin, W. J. Am. Chem. Soc. 2016, 138, 3501. |
| [42] | Paradine, S. M.; Griffin, J. R.; Zhao, J.; Petronico, A. L.; Miller, S. M.; White, M. C. Nat. Chem. 2015, 7, 987. |
| [43] | Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M. H.; Chang, S. Science 2018, 359, 1016. |
| [44] | (a) Hayashi, H.; Uchida, T. Eur. J. Org. Chem. 2020, 909. |
| [44] | (b) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247. |
| [44] | (c) Wang, P.; Deng, L. Chin. J. Chem. 2018, 36, 1222. |
| [45] | (a) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem. Int. Ed. 2008, 47, 5056. |
| [45] | (b) Stokes, B. J.; Jovanovic, B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. J. Org. Chem. 2009, 74, 3225. |
| [46] | Ton, T. M.; Tejo, C.; Tania, S.; Chang, J. W.; Chan, P. W. J. Org. Chem. 2011, 76, 4894. |
| [47] | (a) Uchida, T.; Katsuki, T. Chem. Rec. 2014, 14, 117. |
| [47] | (b) Damiano, C.; Intrieri, D.; Gallo, E. Inorg. Chim. Acta 2018, 470, 51. |
| [47] | (c) Müller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905. |
| [47] | (d) Halfen, J. A. Curr. Org. Chem. 2005, 9, 657. |
| [47] | (e) Changm, J. W. W.; Ton, T. M. U.; Chan, P. W. H. Chem. Rec. 2011, 11, 331. |
| [48] | (a) Mancheño, O. G.; Bolm, C. Chem. Eur. J. 2007, 13, 6674. |
| [48] | (b) Yoshitake, M.; Hayashi, H.; Uchida, T. Org. Lett. 2020, 22, 4021. |
| [48] | (c) Lam, T. L.; Tso, K. C.-H.; Cao, B.; Yang, C.; Chen, D.; Chang, X. Y.; Huang, J. S.; Che, C. M. Inorg. Chem. 2017, 56, 4253. |
| [48] | (d) Wang, J.; Frings, M.; Bolm, C. Angew. Chem. Int. Ed. 2013, 125, 8823. |
| [48] | (e) Xiao, X. S.; Huang, S. P.; Tang, S. S.; Jia, G. K.; Ou, G. C.; Li, Y. Y. J. Org. Chem. 2019, 84, 7618. |
| [49] | (a) Ragaini, F.; Penoni, A.; Gallo, E.; Tollari, S.; Gotti, C. L.; Lapadula, M.; Mangioni, E.; Cenini, S. Chem. Eur. J. 2003, 9, 249. |
| [49] | (b) Harrold, N. D.; Waterman, R.; Hillhouse, G. L.; Cundari, T. R. J. Am. Chem. Soc. 2009, 131, 12872. |
| [49] | (c) Takaoka, A.; Moret, M.-E.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 6695. |
| [50] | Doyle, M. P. In Reactive Intermediate Chemistry, Chapter 12, Eds.: Moss, R. A.; Platz, M. S.; Jones, Jr., M., Wiley, New York, 2004, pp. 561-592. |
| [51] | For review: a Pei, C.; Zhang, C.; Qian, Y.; Xu, X. Org. Biomol. Chem. 2018, 16, 8677. |
| [51] | Selected recent advances: |
| [51] | (b) Zheng, Y.; Bao, M.; Yao, R.; Qiu, L.; Xu, X. Chem. Commun. 2018, 54, 350. |
| [51] | (c) Zhang, C.; Li, H.; Pei, C.; Qiu, L.; Hu, W.; Bao, X.; Xu, X. ACS Catal. 2019, 9, 2440. |
| [51] | (d) Dong, K.; Fan, X.; Pei, C.; Zheng, Y.; Chang, S.; Cai, J.; Qiu, L.; Yu, Z.; Xu, X. Nat. Common. 2020, 11, 2363. |
| [51] | (e) Zhang, C.; Hong, K.; Pei, C.; Zhou, S.; Hu, W.; Hashmi, A. S. K.; Xu, X. Nat. Commun. 2021, 12, 1182. |
| [51] | (f) Bao, M.; Xie, X.; Hu, W.; Xu, X. Adv. Syn. Cat. 2021, 363, 4018. |
| [52] | For reviews: a Davies, P. W.; Garzon, M. Asian J. Org. Chem. 2015, 4, 694. |
| [52] | (b) Liao, Y.; Zhu, L.; Yu, Y.; Chen, G.; Huang, X. Chin. J. Org. Chem. 2017, 37, 2785. |
| [52] | (c) Tian, X.; Song, L.; Hashmi, A. S. K. Chem. Eur. J. 2020, 26, 3197. |
| [53] | Early examples and selected advances: a Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260. |
| [53] | (b) Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738. |
| [53] | (c) Gronnier, C.; Boissonnat, G.; Gagosz, F. Org. Lett. 2013, 15, 4234. |
| [53] | (d) Matsuoka, J.; Matsuda, Y.; Kawada, Y.; Oishi, S.; Ohno, H. Angew. Chem., Int. Ed. 2017, 56, 7444. |
| [53] | (e) Cai, J.; Wu, B.; Rong, G.; Zhang, C.; Qiu, L.; Xu, X. Org. Lett. 2018, 20, 2733. |
| [53] | (f) Saito, A.; Kambara, Y.; Yagyu, T.; Noguchi, K.; Yoshimura, A.; Zhdankin, V. V. Adv. Synth. Catal. 2015, 357, 667. |
| [54] | Thornton, A. R.; Blakey, S. B. J. Am. Chem. Soc. 2008, 130, 5020. |
| [55] | Mace, N.; Thornton, A. R.; Blakey, S. B. Angew. Chem., Int. Ed. 2013, 52, 5836. |
| [56] | Hong, K.; Su, H.; Pei, C.; Lv, X.; Hu, W.; Qiu, L.; Xu, X. Org. Lett. 2019, 21, 3328. |
| [57] | Hong, K.; Zhou, S. Hu, W.; Xu, X. Org. Chem. Front. 2020, 7, 1327. |
| [58] | Thornton, A. R.; Martin, V. I.; Blakey, S. B. J. Am. Chem. Soc. 2009, 131, 2434. |
| [59] | Brawn, R. A.; Zhu, K.; Panek, J. S. Org. Lett. 2014, 16, 74. |
| [60] | Rodríguez, M. R.; Beltrán, A.; Mudarra, A. L.; Alvarez, E.; Maseras, F.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2017, 56, 12842. |
| [61] | Pan, D.; Wei, Y.; Shi, M. Org. Lett. 2018, 20, 84. |
| [62] | Pan, D.; Wei, Y.; Shi, M. Org. Lett. 2017, 19, 3584. |
| [63] | Pan, D.; Wei, Y.; Shi, M. Org. Chem. Front. 2019, 6, 1123. |
| [64] | Roy, S.; Khatua, H.; Das, S. K.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2019, 58, 11439. |
/
| 〈 |
|
〉 |