综述与进展

烯基自由基参与的分子内氢原子转移反应的新进展

  • 乐柏佟 ,
  • 吴新鑫 ,
  • 朱晨
展开
  • a 苏州大学材料与化学化工学部 江苏省有机合成重点实验室 苏州 215123
    b 中国科学院上海有机化学研究所 天然产物有机合成重点实验室 上海 200032

收稿日期: 2021-08-17

  修回日期: 2021-10-05

  网络出版日期: 2022-02-24

基金资助

国家自然科学基金(21971173)

Recent Advances in Vinyl Radical-Mediated Hydrogen Atom Transfer

  • Baitong Yue ,
  • Xinxin Wu ,
  • Chen Zhu
Expand
  • a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123
    b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
* Corresponding author. E-mail:

Received date: 2021-08-17

  Revised date: 2021-10-05

  Online published: 2022-02-24

Supported by

National Natural Science Foundation of China(21971173)

摘要

近年来烯基自由基引发的氢原子转移反应受到了广泛的关注. 利用该策略可以实现自由基成环反应和区域选择性的远程sp3碳氢键官能化反应, 包括碳氢键烯基化、炔基化、卤化及芳基化等反应. 在该类反应中, 烯基自由基的产生方式由传统的烯基卤化物单电子还原, 拓展到通过外加自由基对炔基的加成. 这些反应依据底物类型的不同, 机理路径也有所不同. 通常情况下, 攫氢产生的烷基自由基会重新加成到烯烃上, 实现成环反应. 如果以炔丙醇作为底物, 成环后形成的烷基自由基易发生开环反应实现烯烃迁移. 当以非末端炔烃为底物时, 可能发生分子间的自由基官能化反应. 烯基自由基参与氢原子转移反应具有区域选择性佳、原子经济性好以及反应模式多样等优点. 对该研究领域的近期进展进行了综述.

本文引用格式

乐柏佟 , 吴新鑫 , 朱晨 . 烯基自由基参与的分子内氢原子转移反应的新进展[J]. 有机化学, 2022 , 42(2) : 458 -470 . DOI: 10.6023/cjoc202108027

Abstract

In recent years, vinyl radical-mediated hydrogen atom transfer (HAT) has received increasing attention. This protocol provides an efficient pathway for radical cyclization and regioselective C(sp3)—H bond functionalization including vinylation, alkynylation, halogenation, arylation, etc. Generally, vinyl radicals are generated from single electron reduction of vinyl halides or the addition of extra radical to alkynes. The reaction pathways depend on substrates. For example, the resulting alkyl radical arising from vinyl radical-mediated HAT process is prone to be intramolecularly re-added to alkene, leading to cyclic products. When employing specific propargyl alcohols as substrates, the cyclic alkyl radical intermediate undergoes β-scission of C—C bond to realize vinyl migration. In addition, intermolecular radical trapping usually occurs by using internal alkynes. The transformation based on vinyl radical-mediated HAT features high regioselectivity, good atom-economy, and broad diversity of reaction modes. The recent advances in this research area are summarized.

参考文献

[1]
(a) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[1]
(b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
[1]
(c) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
[2]
(a) Wu, X.; Zhu, C. Chem. Commun. 2019, 55, 9747.
[2]
(b) Wu, X.; Zhu, C. CCS Chem. 2020, 2, 813.
[2]
(c) Guo, W.; Wang, Q.; Zhu, J. Chem. Soc. Rev. 2021, 50, 7359.
[3]
(a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640.
[3]
(b) Barton, D. H. R.; Beaton, J. M. J. Am. Chem. Soc. 1960, 82, 2641.
[3]
(c) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1961, 83, 4076.
[4]
(a) Hofmann, A. W. Chem. Ber. 1883, 16, 558.
[4]
(b) Löffler, K.; Freytag, C. Chem. Ber. 1909, 42, 3427.
[5]
Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. 1967, 89, 3772.
[6]
Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am. Chem. Soc. 1988, 110, 5900.
[7]
Pagire, S. K.; Reiser, O. Green Chem. 2017, 19, 1721.
[8]
(a) Fabrice, D.; Beaufils, F.; Renaud, P. Org. Lett. 2007, 9, 4375.
[8]
(b) Gloor, C. S.; Dénès, F.; Renaud, P. Angew. Chem., Int. Ed. 2017, 56, 13329.
[8]
(c) Xie, S.; Li, Y.; Liu, P.; Sun, P. Org. Lett. 2020, 22, 8774.
[9]
Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2018, 57, 2712.
[10]
Denes, F.; Beaufils, F.; Renaud, P. Synlett 2008, 2389.
[11]
An, X.-D.; Jiao, Y.-Y.; Zhang, H.; Gao, Y.; Yu, S. Org. Lett. 2018, 20, 401.
[12]
Hu, M.; Fan, J.; Liu, Y.; Ouyang, X.; Song, R.; Li, J.-H. Angew. Chem.,Int. Ed. 2015, 54, 9577.
[13]
Qiu, J.; Jiang, B.; Zhu, Y.; Hao, W.; Wang, D.; Sun, J.; Wei, P.; Tu, S.; Li, G. J. Am. Chem. Soc. 2015, 137, 8928.
[14]
Jiang, B.; Li, J.; Pan, Y.; Hao, W.; Li, G.; Tu, S. Chin. J. Chem. 2017, 35, 323.
[15]
Li, J.; Hao, W.; Zhou, P.; Zhu, Y.; Wang, S.; Tu, J.; Jiang, B. RSC Adv. 2017, 7, 9693.
[16]
Shen, Z.; Shi, H.; Hao, W.; Tu, S.; Jiang, B. Chem. Commun. 2018, 54, 11542.
[17]
Song, K.; Qin, X.; Ma, Z.; Geng, F.; Hao, W.; Tu, S.; Jiang, B. Org. Chem. Front. 2021.
[18]
Jiao, M.-J.; Liu, D.; Hu, X.-Q.; Xu, P.-F. Org. Chem. Front. 2019, 6, 3834.
[19]
Huang, L.; Ye, L.; Li, X.; Li, Z.; Lin, J.; Liu, X. Org. Lett. 2016, 18, 5284.
[20]
Zhong, L.-J.; Li, Y.; An, D.-L.; Li, J.-H. ACS Catal. 2021, 11, 383.
[21]
Yang, Y.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2021, 60, 2145.
[22]
(a) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328.
[22]
(b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
[22]
(c) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
[22]
(d) Wu, X.; Ma, Z.; Feng, T.; Zhu, C. Chem. Soc. Rev. 2021, 50, 11577
[23]
(a) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139, 1388.
[23]
(b) Yu, J.; Wu, Z.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 17156.
[23]
(c) Chen, D.; Ji, M.; Yao, Y.; Zhu, C. Acta Chim. Sinica 2018, 76, 951. (in Chinese)
[23]
( 陈栋, 吉梅山, 姚英明, 朱晨, 化学学报, 2018, 76, 951.)
[23]
(d) Tang, N.; Shao, X.; Wang, M.; Wu, X.; Zhu, C. Acta Chim. Sinica 2019, 77, 922. (in Chinese)
[23]
( 汤娜娜, 邵鑫, 王明扬, 吴新鑫, 朱晨, 化学学报, 2019, 77, 922.)
[23]
(e) Liu, J.; Wu, S.; Yu, J.; Lu, C.; Wu, Z.; Wu, X.; Xue, X.-S.; Zhu, C. Angew. Chem., Int. Ed. 2020, 59, 8195.
[23]
(f) Zhang, H.; Kou, L.; Chen, D.; Ji, M.; Bao, X.; Wu, X.; Zhu, C. Org. Lett. 2020, 22, 5947.
[23]
(g) Ji, M.; Wang, X.; Liu, J.; Wu, X.; Zhu, C. Sci. China: Chem. 2021, 64, 1703.
[23]
(h) Zhang, H.; Wang, M.; Wu, X.; Zhu, C. Angew. Chem., Int. Ed. 2021, 60, 3714.
[24]
(a) Wu, Z.; Ren, R.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 10821.
[24]
(b) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C. Adv. Synth. Catal. 2017, 359, 1959.
[24]
(c) Ren, R.; Wu, Z.; Huan, L.; Zhu, C. Adv. Synth. Catal. 2017, 359, 3052.
[24]
(d) Ji, M.; Wu, Z.; Zhu, C. Chem. Commun. 2019, 55, 2368.
[25]
(a) Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Angew. Chem., Int. Ed. 2017, 56, 4545.
[25]
(b) Wang, M.; Zhang, H.; Liu, J.; Wu, X.; Zhu, C. Angew. Chem., Int. Ed. 2019, 58, 17646.
[26]
(a) Yu, J.; Wang, D.; Xu, Y.; Wu, Z.; Zhu, C. Adv. Synth. Catal. 2018, 360, 744.
[26]
(b) Wang, M.; Li, M.; Yang, S.; Xue, X.-S.; Wu, X.; Zhu, C. Nat. Commun. 2020, 11, 672.
[27]
(a) Tang, X.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 814.
[27]
(b) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
[28]
Sun, J.; Zheng, G.; Zhang, Q.; Wang, Y.; Yang, S.; Zhang, Q.; Li, Y.; Zhang, Q. Org. Lett. 2017, 19, 3767.
[29]
(a) Yu, J.; Zhang, H.; Wu, X.; Zhu, C. CCS Chem. 2021, 3, 1426.
[29]
(b) Wei, Y.; Zhang, H.; Wu, X.; Zhu, C. Angew. Chem., Int. Ed. 2021, 60, 20215.
[30]
(a) Wu, X.; Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640.
[30]
(b) Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343.
[30]
(c) Tang, N.; Wu, X.; Zhu, C. Chem. Sci. 2019, 10, 6915.
[30]
(d) Wang, M.; Huan, L.; Zhu, C. Org. Lett. 2019, 21, 821.
[30]
(e) Shao, X.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2020, 22, 7450.
[31]
Wu, S.; Wu, X.; Wang, D.; Zhu, C. Angew. Chem., Int. Ed. 2019, 58, 1499.
[32]
Wu, S.; Wu, X.; Wu, Z.; Zhu, C. Sci. China: Chem. 2019, 62, 1507.
[33]
Yang, S.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2019, 21, 4837.
[34]
He, F.-S.; Yao, Y.; Xie, W.; Wu, J. Adv. Synth. Catal. 2020, 362, 4744.
[35]
Bao, P.; Yu, F.; He, F.-S.; Tang, Z.; Deng, W.-P.; Wu, J. Org. Chem. Front. 2021, 8, 4820.
[36]
Niu, T.; Yang, S.; Wu, X.; Zhu, C. Org. Chem. Front. 2020, 7, 2981.
[37]
Shang, T.; Zhang, J.; Zhang, Y.; Zhang, F.; Li, X-S.; Zhu, G. Org. Lett. 2020, 22, 3667.
[38]
Xiong, Z.; Zhang, F.; Yu, Y.; Tan, Z.; Zhu, G. Org. Lett. 2020, 22, 4088.
[39]
Shu, C.; Feng, J.; Zheng, H.; Cheng, C.; Yuan, Z.; Zhang, Z.; Xue, X.-S.; Zhu, G. Org. Lett. 2020, 22, 9398.
[40]
Zhu, H.; Shang, T.; Lu, Z.; Luo, F.; Zhu, G. Chin. J. Org. Chem. 2020, 40, 3410. (in Chinese)
[40]
( 朱海倩, 商甜波, 卢增辉, 罗芳, 朱钢国, 有机化学, 2020, 40, 3410.)
[41]
Zhu, H.; Zheng, H.; Zhang, J.; Feng, J.; Kong, L.; Zhang, F.; Xue, X.-S.; Zhu, G. Chem. Sci. 2021, 12, 11420.
[42]
Li, H.; Guo, L.; Feng, X.; Huo, L.; Zhu, S.; Chu, L. Chem. Sci. 2020, 11, 4904.
文章导航

/