综述与进展

乙烯基/芳基鏻盐在有机合成中的研究进展

  • 黄卫春 ,
  • 丁欣宇 ,
  • 訾由
展开
  • 南通大学化学化工学院 江苏南通 226019

收稿日期: 2021-07-31

  修回日期: 2021-09-15

  网络出版日期: 2022-02-24

基金资助

国家自然科学青年基金(61805147); 南通大学大型仪器设备开放基金(KFJN2112); 南通大学大型仪器设备开放基金(KFJN2119); 南通大学大型仪器设备开放基金(KFJN2127); 江苏省研究生科研与实践创新计划(SJCX21_1450)

Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis

  • Weichun Huang ,
  • Xinyu Ding ,
  • You Zi
Expand
  • School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019
* Corresponding authors. E-mail: ;

Received date: 2021-07-31

  Revised date: 2021-09-15

  Online published: 2022-02-24

Supported by

National Natural Science Foundation of China(61805147); Large Instruments Open Foundation of Nantong University(KFJN2112); Large Instruments Open Foundation of Nantong University(KFJN2119); Large Instruments Open Foundation of Nantong University(KFJN2127); Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX21_1450)

摘要

膦类化合物由于在有机合成反应中作为高效配体、催化剂以及化学计量还原剂等一直受到研究者们的广泛关注, 然而鏻盐作为有机膦类化合物的一类重要衍生物, 在有机合成中的应用主要集中在Wittig反应、Staudinger反应或者作为反应中间体. 在过去很长一段时间里, 乙烯基/芳基鏻盐的反应仅有零星的报道. 近几年, 随着新方法的不断涌现, 乙烯基/芳基等不同官能团的引入使得乙烯基/芳基鏻盐的应用取得了快速的进展, 也为具有生物活性或药物活性的化合物的合成提供了新思路. 根据鏻盐的种类和反应的类型综述了近几年来通过乙烯基/芳基鏻盐构建/引入乙烯基和芳基官能团的有机合成反应的研究进展.

本文引用格式

黄卫春 , 丁欣宇 , 訾由 . 乙烯基/芳基鏻盐在有机合成中的研究进展[J]. 有机化学, 2022 , 42(2) : 471 -486 . DOI: 10.6023/cjoc202107065

Abstract

Phosphines have attracted much attention as efficient ligands, catalysts or stoichiometric reductants in organic synthesis. However, the application of phosphonium salts, as a kind of important derivatives of phosphines, has focused on Wittig reaction, Staudinger reaction or other reactions as intermediates. With the rapid development of new methods, the introdcution of vinyl/aryl groups not only makes a considerable progress in the applications of vinyl/aryl phosphonium salts, but provides novel strategies for the synthesis of bioactive or pharmaceutical molecules. The review is summarized based on the types of phosphonium salts and reactions to construct vinyl/aryl groups in recent years.

参考文献

[1]
Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654.
[2]
Hoffmann, R. W. Angew. Chem., Int. Ed. 2001, 40, 1411.
[3]
Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
[4]
Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.
[5]
Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
[6]
Mitsunobu, O. Synthesis 1981, 1.
[7]
Scheweizer, E. E. J. Am. Chem. Soc. 1964, 86, 2744.
[8]
Drach, B.; Brovarets, V.; Smolii, O. Russ. J. Gen. Chem. 2002, 72, 1661.
[9]
Kuźnik, A.; Mazurkiewicz, R.; Fryczkowska, B. Beilstein J. Org. Chem. 2017, 13, 2710.
[10]
Xu, S.; He, Z. RSC Adv. 2013, 3, 16885.
[11]
Ni, H.; Chan, W. L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
[12]
Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.
[13]
Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
[14]
Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
[15]
Lin, J. H.; Xiao, J. C. Acc. Chem. Res. 2020, 53, 1498.
[16]
Yu, J.; Lin, J.-H.; Yu, D.; Du, R.; Xiao, J.-C. Nat. Commun. 2019, 10, 5362.
[17]
Zhang, M.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2019, 58, 6079.
[18]
Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669.
[19]
Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D.-H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196.
[20]
Deng, Z.; Liu, C.; Zeng, X. L.; Lin, J. H.; Xiao, J. C. J. Org. Chem. 2016, 81, 12084.
[21]
Deng, Z.; Lin, J. H.; Cai, J.; Xiao, J. C. Org. Lett. 2016, 18, 3206.
[22]
Hu, C.-C.; Hu, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2021, 242, 109695.
[23]
Hua, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2018, 208, 73.
[24]
Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 7373.
[25]
Heine, N. B.; Studer, A. Org Lett 2017, 19, 4150.
[26]
Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007.
[27]
Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741.
[28]
Corey, E. Angew. Chem., Int. Ed. 2002, 41, 1650.
[29]
Ismail, Z.; Hoffmann, H. J. Org. Chem. 1981, 46, 3549.
[30]
Dolbier Jr, W. R.; Burkholder, C. R.; Wicks, G. E.; Palenik, G. J.; Gawron, M. J. Am. Chem. Soc. 1985, 107, 7183.
[31]
Bonjouklian, R.; Ruden, R. A. J. Org. Chem. 1977, 42, 4095.
[32]
Nowakowska, Z. Eur. J. Med. Chem. 2007, 42, 125.
[33]
Mishra, N.; Arora, P.; Kumar, B.; Mishra, L. C.; Bhattacharya, A.; Awasthi, S. K.; Bhasin, V. K. Eur. J. Med. Chem. 2008, 43, 1530.
[34]
Baird, M. C. Chem. Rev. 2000, 100, 1471.
[35]
Willis, M. C. Chem. Rev. 2010, 110, 725.
[36]
McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
[37]
Hoffmann, H.; Diehr, H. J. Chem. Ber. 1965, 98, 363.
[38]
Horner, L.; Hoffmann, H. Angew. Chem. 1956, 68, 473.
[39]
Richards, E.; Tebby, J.; Ward, R.; Williams, D. J. Chem. Soc. C 1969, 1542.
[40]
Tebby, J. C.; Wilson, I. F.; Griffiths, D. V. J. Chem. Soc., 1979, 2133.
[41]
Larpent, C.; Patin, H. Tetrahedron Lett. 1988, 29, 4577.
[42]
Larpent, C.; Meignan, G.; Patin, H. Tetrahedron Lett. 1991, 32, 2615.
[43]
Larpent, C.; Meignan, G. Tetrahedron Lett. 1993, 34, 4331.
[44]
Arbuzova, S. N.; Glotova, T. E.; Dvorko, M. Y.; Ushakov, I. A.; Gusarova, N. K.; Trofimov, B. A. ARKIVOC 2011, 11, 183.
[45]
Arbuzova, S. N.; Gusarova, N. K.; Glotova, T. E.; Ushakov, I. A.; Verkhoturova, S. I.; Korocheva, A. O.; Trofimov, B. A. Eur. J. Org. Chem. 2014, 2014, 639.
[46]
Pierce, B. M.; Simpson, B. F.; Ferguson, K. H.; Whittaker, R. E. Org. Biomol. Chem. 2018, 16, 6659.
[47]
Seifert, F.; Drikermann, D.; Steinmetzer, J.; Zi, Y.; Kupfer, S.; Vilotijevic, I. Org. Biomol. Chem. 2021, 19, 6092.
[48]
Zi, Y.; Schömberg, F.; Seifert, F.; Görls, H.; Vilotijevic, I. Org. Biomol. Chem. 2018, 16, 6341.
[49]
Schömberg, F.; Zi, Y.; Vilotijevic, I. Chem. Commun. 2018, 54, 3266.
[50]
Schömberg, F.; Perić, M.; Meyer, M.; Vilotijevic, I. Tetrahedron 2021, 99, 132457.
[51]
Huth, A.; Beetz, I.; Schumann, I. Tetrahedron 1989, 45, 6679.
[52]
Saa, J. M.; Martorell, G.; Garcia-Raso, A. J. Org. Chem. 1992, 57, 678.
[53]
Gilbert, A. M.; Wulff, W. D. J. Am. Chem. Soc. 1994, 116, 7449.
[54]
Ortiz, J.; Havlas, Z.; Hoffmann, R. Helv. Chim. Acta 1984, 67, 1.
[55]
Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Angew. Chem., Int. Ed. 2005, 44, 6166.
[56]
Segelstein, B.; Butler, T.; Chenard, B. J. Org. Chem. 1995, 60, 12.
[57]
Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1995, 24, 1101.
[58]
Zhang, X.; McNally, A. Angew. Chem., Int. Ed. 2017, 56, 9833.
[59]
Zhang, X.; McNally, A. ACS Catal. 2019, 9, 4862.
[60]
Che, Y. Y.; Yue, Y.; Lin, L. Z.; Pei, B.; Deng, X.; Feng, C. Angew. Chem., Int. Ed. 2020, 59, 16414.
[61]
Therkelsen, F. D.; Rottländer, M.; Thorup, N.; Pedersen, E. B. Org. Lett. 2004, 6, 1991.
[62]
Hatano, M.; Ito, O.; Suzuki, S.; Ishihara, K. Chem. Commun. 2010, 46, 2674.
[63]
Hatano, M.; Ito, O.; Suzuki, S.; Ishihara, K. J. Org. Chem. 2010, 75, 5008.
[64]
Zong, H.; Huang, H.; Liu, J.; Bian, G.; Song, L. J. Org. Chem. 2012, 77, 4645.
[65]
Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279.
[66]
Oi, S.; Moro, M.; Inoue, Y. Organometallics 2001, 20, 1036.
[67]
Liao, Y.-X.; Xing, C.-H.; He, P.; Hu, Q.-S. Org. Lett. 2008, 10, 2509.
[68]
Zou, T.; Pi, S.-S.; Li, J.-H. Org. Lett. 2008, 11, 453.
[69]
Zhou, F.; Li, C.-J. Nat. Commun. 2014, 5, 4254.
[70]
Anders, E.; Markus, F. Chem. Ber. 1989, 122, 113.
[71]
Shimada, M.; Sugimoto, O.; Sato, A. Heterocycles 2011, 83, 837.
[72]
Deng, Z.; Lin, J. H.; Xiao, J. C. Nat. Commun. 2016, 7, 10337.
[73]
Gaykar, R. N.; Bhunia, A.; Biju, A. T. J. Org. Chem. 2018, 83, 11333.
[74]
Koniarczyk, J. L.; Hesk, D.; Overgard, A.; Davies, I. W.; McNally, A. J. Am. Chem. Soc. 2018, 140, 1990.
[75]
Bugaenko, D. I.; Yurovskaya, M. A.; Karchava, A. V. Org. Lett. 2021, 23, 6099.
[76]
Szymczyk, M. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 264.
[77]
Cheema, Z. M.; Gondal, H. Y.; Raza, A. R.; Abbaskhan, A. Mol. Diversity 2020, 24, 455.
[78]
Mann, F. G.; Waston, J. J. Org. Chem. 1948, 13, 502.
[79]
Newkome, G. R.; Hager, D. C. J. Am. Chem. Soc. 1978, 100, 5567.
[80]
Uchida, Y.; Kozawa, H. Tetrahedron Lett. 1989, 30, 6365.
[81]
Uchida, Y.; Onoue, K.; Tada, N.; Nagao, F.; Kozawa, H.; Oae, S. Heteroat. Chem. 1990, 1, 295.
[82]
Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science 2018, 362, 799.
[83]
Boyle, B. T.; Hilton, M. C.; McNally, A. J. Am. Chem. Soc. 2019, 141, 15441.
[84]
Koniarczyk, J. L.; Greenwood, J. W.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Angew. Chem., Int. Ed. 2019, 58, 14882.
[85]
Anders, E.; Markus, F. Tetrahedron Lett. 1987, 28, 2675.
[86]
Anders, E.; Markus, F. Chem. Ber. 1989, 122, 119.
[87]
Hilton, M. C.; Dolewski, R. D.; McNally, A. J. Am. Chem. Soc. 2016, 138, 13806.
[88]
Anderson, R. G.; Jett, B. M.; McNally, A. Tetrahedron 2018, 74, 3129.
[89]
Patel, C.; Mohnike, M.; Hilton, M. C.; McNally, A. Org. Lett. 2018, 20, 2607.
[90]
Anderson, R. G.; Jett, B. M.; McNally, A. Angew. Chem., Int. Ed. 2018, 57, 12514.
[91]
Zi, Y.; Schomberg, F.; Wagner, K.; Vilotijevic, I. Org. Lett. 2020, 22, 3407.
[92]
Zi, Y.; Wagner, K.; Schomberg, F.; Vilotijevic, I. Org. Biomol. Chem. 2020, 18, 5183.
[93]
Levy, J. N.; Alegre-Requena, J. V.; Liu, R.; Paton, R. S.; McNally, A. J. Am. Chem. Soc. 2020, 142, 11295.
文章导航

/