研究论文

一锅法合成两种含有季碳中心的氰基化合物

  • 任新意 ,
  • 王广柱 ,
  • 纪晓雷 ,
  • 董开武
展开
  • 华东师范大学化学与分子工程学院 庄长恭研究所 上海市绿色化学与化工过程绿色化重点实验室 上海 200062

收稿日期: 2021-07-06

  修回日期: 2021-10-07

  网络出版日期: 2022-02-24

Synthesis of Two Types of Nitriles Both Bearing Quaternary Carbon Centers in One-Pot Manner

  • Xinyi Ren ,
  • Guangzhu Wang ,
  • Xiaolei Ji ,
  • Kaiwu Dong
Expand
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062
* Corresponding author. E-mail:

Received date: 2021-07-06

  Revised date: 2021-10-07

  Online published: 2022-02-24

摘要

α-溴代酰胺和亲电氰化试剂在锌粉存在条件下转化为相应的含有季碳中心的α-氰基酰胺和烯酮亚胺锌中间体; 向反应体系中引入亲电试剂捕获该中间体, 顺利得到另一种含有季碳中心的氰基产物, 实现了一锅法合成两种含有季碳中心的氰基化合物. 该反应体系可以构建含有碳-碳、碳-硫或碳-氟键的季碳中心. 该方法可用于关键药物中间体如洛哌丁胺、普罗地芬、维拉帕米、戈洛帕米、α-氟代布洛芬以及α-氟代氟比洛芬的形式合成, 体现了其潜在应用价值.

本文引用格式

任新意 , 王广柱 , 纪晓雷 , 董开武 . 一锅法合成两种含有季碳中心的氰基化合物[J]. 有机化学, 2022 , 42(2) : 526 -533 . DOI: 10.6023/cjoc202107017

Abstract

α-Bromocarboxamides and electrophilic cyanide reagent were transformed into the corresponding α-cyanocarboxamides and ketene imine zinc intermediate in the presence of Zn reductant. Trapping of such Zn species with additional electrophiles resulted another type of nitriles, which realized the synthesis of two types of nitriles both bearing quaternary carbon centers in one-pot manner. This approach could be used to construct C—C, C—S, or C—F bond. Formal synthesis of several key pharmaceutical intermediates including loperamide, proadifen, verapamil, and gallopamil as well as α-fluoroibuprofen and α-fluoroflurbiprofen demonstrated the potential application of this methodology.

参考文献

[1]
(a) Pollak, P.; Romeder, G.; Hagedorn, F.; Gelbke, H.In Ullman’s Encyclopedia of Industrial Chemistry, 5th ed., Vol. A17, Wiley-VCH, Weinheim, Germany, 1985, p. 363.
[1]
(b) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
[1]
(c) Wang, J.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1643. (in Chinese)
[1]
( 王江, 柳红, 有机化学, 2012, 32, 1643.)
[1]
(d) Qin, T.; Zhang, S.; Liao, W. Chin. J. Org. Chem. 2014, 34, 2187. (in Chinese)
[1]
( 秦天游, 张晓安, 寮渭巍, 有机化学, 2014, 34, 2187.)
[2]
Wang, Y.; Du, Y.; Huang, N. Future Med. Chem. 2018, 10, 2713.
[3]
(a) Rappoport, Z. Chemistry of the Cyano Group, Wiley, London, 1970.
[3]
(b) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, Wiley, New York, 1989.
[3]
(c) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
[4]
(a) Hideji, T.; Kazuo, H. Toxicol. Lett. 1984, 22, 267.
[4]
(b) Ahmed, A. E.; Trieff, N. M. Prog. Drug Metab. 1983, 7, 229.
[5]
Yurino, T.; Tani, R.; Ohkuma, T. ACS Catal. 2019, 9, 4434.
[6]
Reetz, M. T.; Chatziiosifidis, I. Angew. Chem., Int. Ed. Engl. 1981, 20, 1017.
[7]
(a) Wu, W. B.; Yu, J.-S.; Zhou, J. ACS Catal. 2020, 10, 7668.
[7]
(b) Ratani, T. S.; Bachman, S.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 13902.
[7]
(c) Miwa, N.; Tanaka, C.; Ishida, S.; Hirata, G.; Song, J.; Torigoe, T.; Kuninobu, Y.; Nishikata, T. J. Am. Chem. Soc. 2020, 142, 1692.
[7]
(d) Fang, X.; Yu, P.; Morandi, B. Science 2016, 351, 832.
[7]
(e) Guo, F.; You, J.; Wu, W.; Yu, Y.; Jing, B.; Liu, B. Chin. J. Org. Chem. 2021, 41, 1968. (in Chinese)
[7]
郭芳, 由君, 武文菊, 喻艳超, 井彬, 刘波, 有机化学, 2021, 41, 1968.
[7]
(f) Xu, W.; Huang, D.; Wang, K.; Zhao, F.; Zhao, Z.; Hu, Y.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2020, 40, 922. (in Chinese)
[7]
( 徐炜刚, 黄丹凤, 王克虎, 赵芳霞, 赵转霞, 虎永琴, 苏瀛鹏, 胡雨来, 有机化学, 2020, 40, 922.)
[8]
(a) Schörgenhumer, J.; Waser, M. Org. Chem. Front. 2016, 3, 1535.
[8]
(b) Nauth, A. M.; Opatz, T. Org. Biomol. Chem. 2019, 17, 11.
[8]
(c) Chaitanya, M.; Anbarasan, P. Org. Biomol. Chem. 2018, 16, 7084.
[8]
(d) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 519.
[8]
(e) Chen, H.; Sun, S.; Liu, Y. A.; Liao, X. ACS Catal. 2020, 10, 1397.
[8]
(f) Li, X.; Golz, C.; Alcarazo, M. Angew. Chem., Int. Ed. 2019, 58, 9496.
[8]
(g) Kiyokawa, K.; Nagata, T.; Minakata, S. Angew. Chem., Int. Ed. 2016, 55, 10458.
[8]
(h) Lu, Z.; Hu, X.-D.; Zhang, H.; Zhang, X.-W.; Cai, J.; Usman, M.; Cong, H.; Liu, W.-B. J. Am. Chem. Soc. 2020, 142, 7328.
[8]
(i) Hu, X.-D.; Chen, Z.-H.; Zhao, J.; Sun, R.-Z.; Zhang, H.; Qi, X.-T.; Liu, W.-B. J. Am. Chem. Soc. 2021, 143, 3734.
[8]
(j) Cai, J.; Bai, L.-G.; Zhang, Y.; Wang, Z.-K.; Yao, F.; Peng, J.-H.; Yan, W.; Wang, Y.; Zheng, C.; Liu, W.-B. Chem 2021, 7, 799.
[8]
(k) Malapit, C. A.; Caldwell, D. R.; Luvaga, I. K.; Reeves, J. T.; Volchkov, I.; Gonnella, N. C.; Han, Z. S.; Busacca, C. A.; Howell, A. R.; Senanayake, C. H. Angew. Chem., Int. Ed. 2017, 56, 6999.
[8]
(l) Zhou, F.; Zhou, J. Chin. J. Org. Chem. 2020, 40, 2180. (in Chinese)
[8]
( 周锋, 周剑, 有机化学, 2020, 40, 2180.)
[9]
(a) Reeves, J. T.; Malapit, C. A.; Buono, F. G.; Sidhu, K. P.; Marsini, M. A.; Sader, C. A.; Fandrick, K. R.; Busacca, C. A.; Senanayake, C. H. J. Am. Chem. Soc. 2015, 137, 9481.
[9]
(b) Malapit, A.; Luvaga, I. K.; Reeves, J. T.; Volchkov, I.; Busacca, C. A.; Howell, A. R.; Senanayake, C. H. J. Org. Chem. 2017, 82, 4993.
[9]
(c) Alazet, S.; West, M. S.; Patel, P.; Rousseaux, S. A. L. Angew. Chem., Int. Ed. 2019, 58, 10300.
[10]
Ren, X.; Shen, C.; Wang, G.; Shi, Z.; Tian, X.; Dong, K. Org. Lett. 2021, 23, 2527.
[11]
Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
[12]
Mills, L. R.; Graham, J. M.; Patel, P.; Rousseaux, S. A. L. J. Am. Chem. Soc. 2019, 141, 19257.
[13]
(a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[13]
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[14]
Harrington, P. J.; Lodewijk, E. Org. Process Res. Dev. 1997, 1, 72.
[15]
Schlosser, M.; Michel, D.; Guo, Z.-W.; Sih, C. J. Tetrahedron 1996, 52, 8257.
[16]
Wang, M.; Gao, M.; Zheng, Q.-H. Bioorg. Med. Chem. Lett. 2013, 23, 5259.
[17]
Lu, M. C.; Wung, W. E.; Shih, L. B.; Callejas, S.; Gearien, J. E.; Thompson, E. B. J. Med. Chem. 1987, 30, 273.
[18]
(a) Wu, L.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15824.
[18]
(b) Mermerian, A. H.; Fu, G. C. Angew. Chem., Int. Ed. 2005, 44, 949.
[18]
(c) Grenning, A. J.; Tunge, J. A. J. Am. Chem. Soc. 2011, 133, 14785.
[18]
(d) Toma, M.-J.; Turnbulla, B. W. H.; Evans, P. A. Synthesis 2020, 52, 2185.
[19]
Brogden, R. N.; Benfield, P. Drugs 1994, 47, 93.
[20]
Theodore, L. J.; Nelson, W. L. J. Org. Chem. 1987, 52, 1309.
[21]
Mills, L. R.; Graham, J. M.; Patel, P.; Rousseaux, S. A. L. J. Am. Chem. Soc. 2019, 141, 19257.
[22]
Sherwood, A. M.; Williamson, S. E.; Johnson, S. N.; Yilmaz, A.; Day, V. W.; Prisinzano, T. E. J. Org. Chem. 2018, 83, 980.
[23]
Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 4932.
[24]
Yoneda, R.; Osaki, T.; Harusawa, S.; Kurihara, T. J. Chem. Soc., Perkin Trans. 1 1990, 607.
[25]
Orecchia, P.; Yuan, W.; Oestreich, M. Angew. Chem., Int. Ed. 2019, 58, 3579.
[26]
Huang, Y.; Li, X.; Wang, X.; Yu, Y.; Zheng, J.; Wu, W.; Jiang, H. Chem. Sci. 2017, 8, 7047.
[27]
Shen, H.; Liu, Z.; Zhang, P.; Tan, X.; Zhang, Z.; Li, C. J. Am. Chem. Soc. 2017, 139, 9843.
文章导航

/