研究论文

Ag-Cu负载的胺基石墨烯催化β-羟基-1,2,3-三唑绿色合成研究

  • 黄强 ,
  • 邓婷婷 ,
  • 朱佳运 ,
  • 李军 ,
  • 黎飞飞
展开
  • a 遵义医科大学药学院 贵州遵义 563000
    b 遵义医科大学基础药理教育部重点实验室 贵州遵义 563000

收稿日期: 2021-07-10

  修回日期: 2021-09-27

  网络出版日期: 2022-02-24

基金资助

遵义医科大学2018年学术新苗培养及创新探索专项([2018]5772-013); 遵义医科大学2018年学术新苗培养及创新探索专项(CK-1149-011); 贵州省普通高等学校青年科技人才成长(KY[2021]221)

Study on the Green Synthesis of β-Hydroxy-1,2,3-triazoles Catalyzed by An Amino-Functionalized Graphene-Supported Ag-Cu Composites

  • Qiang Huang ,
  • Tingting Deng ,
  • Jiayun Zhu ,
  • Jun Li ,
  • Feifei Li
Expand
  • a School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000
    b Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000
* Corresponding author. E-mail:

Received date: 2021-07-10

  Revised date: 2021-09-27

  Online published: 2022-02-24

Supported by

Academic Cultivation and Innovation Exploration Special Project of Zunyi Medical University in 2018([2018]5772-013); Academic Cultivation and Innovation Exploration Special Project of Zunyi Medical University in 2018(CK-1149-011); Young Talents Growth Project of the Higher Education Institutions of Guizhou Province(KY[2021]221)

摘要

开发了一种Ag-Cu双金属负载的胺基石墨烯催化剂用于1,2,3-三唑类化合物的合成. 利用各种技术对催化剂进行了表征, 催化剂活性测试表明, 该催化剂在温和反应条件下具有高催化活性、好的循环稳定性和易分离的特点. 水作为绿色溶剂, 反应收率高. 该方法为β-羟基-1,2,3-三唑类化合物的水相绿色合成提供了一种可替代的多相催化策略, 具有重要的科学价值.

本文引用格式

黄强 , 邓婷婷 , 朱佳运 , 李军 , 黎飞飞 . Ag-Cu负载的胺基石墨烯催化β-羟基-1,2,3-三唑绿色合成研究[J]. 有机化学, 2022 , 42(2) : 534 -542 . DOI: 10.6023/cjoc202107024

Abstract

An amino-functionalized graphene-immobilized Ag-Cu composite (Ag-Cu/GO-NH2) was synthesized. The properties of the prepared catalyst were analyzed using various techniques, that showed high catalytic activity, good recyclability, and easy separability in the green synthesis of β-hydroxy-1,2,3-triazole derivatives under mild reaction conditions resulting in good to excellent yields. It provided an alternative heterogeneous catalytic strategy for the green synthesis of β-hydroxy- 1,2,3-triazoles in water, which had an important scientific significance.

参考文献

[1]
(a) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian. J. 2011, 6, 2696.
[1]
(b) Bozorov, K.; Zhao, J.; Aisa, H. A. Bioorg. Med. Chem. 2019, 27, 3511.
[1]
(c) Buabeng, E. R.; Henary, M. Bioorg. Med. Chem. 2021, 39, 116140.
[2]
(a) Saehlim, N.; Kasemsuk, T.; Sirion, U.; Saeeng, R. J. Org. Chem. 2018, 83, 13233.
[2]
(b) Zhang, W.; Xu, W.; Zhang, F.; Ma, C.; Ma, K.; Li, Y. Chin. J. Org. Chem. 2020, 40, 2338. (in Chinese)
[2]
( 张文生, 许文静, 张斐, 马春玉, 马科友, 李焱, 有机化学, 2020, 40, 2338.)
[2]
(c) Liu, Q.; Lu, Y.; Bao, P.; Yue, H.; Wei, W. Chin. J. Org. Chem. 2020, 40, 4015. (in Chinese)
[2]
( 刘启顺, 吕玉芬, 鲍鹏丽, 岳会兰, 魏伟, 有机化学, 2020, 40, 4015.)
[3]
(a) Schock, M.; Braese, S. Molecules 2020, 25, 1009.
[3]
(b) Rodrigues, L. D.; Sunil, D.; Chaithra, D.; Bhagavath, P. J. Mol. Liq. 2020, 297, 111909.
[4]
(a) Ra, A.; Fbz, B.; Mk, A.; Eb, C.; Ft, A. J. Mol. Struct. 2021, 1232, 130042.
[4]
(b) Yamada, M.; Takahashi, T.; Hasegawa, M.; Matsumura, M.; Ono, K.; Fujimoto, R.; Kitamura, Y.; Murata, Y.; Kakusawa, N.; Tanaka, M.; Obata, T.; Fujiwara, Y.; Yasuike, S. Bioorg. Med. Chem. Lett. 2018, 28, 152.
[5]
Nejadshafiee, V.; Naeimi, H.; Zahraei, Z. Chem. Data Collect. 2020, 28, 100443.
[6]
(a) Ge, C.; Sang, X.; Yao, W.; Zhang, L.; Wang, D. Green Chem. 2018, 20, 1805.
[6]
(b) Zhu, G.; Duan, Z.; Zhu, H.; Qi, M.; Wang, D. Mol. Catal. 2021, 505, 111516.
[6]
(c) Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21, 5345.
[6]
(d) Yao, W.; Zhang, Y.; Zhu, H.; Ge, C.; Wang, D. Chin. Chem. Lett. 2020, 31, 701.
[6]
(e) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296. (in Chinese)
[6]
( 胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)
[7]
(a) Camberlein, V.; Kraupner, N.; Bou Karroum, N.; Lipka, E.; Deprez-Poulain, R.; Deprez, B.; Bosc, D. Tetrahedron Lett. 2021, 73, 153131.
[7]
(b) Singh, M. S.; Chowdhury, S.; Koley, S. Tetrahedron 2016, 72, 5257.
[7]
(c) Guo, Y.; Liu, Y.; Wan, J. Chin. Chem. Lett. 2021, Doi: 10.1016/j.cclet.2021.08.003.
[7]
(d) Ahmed, M.; Razaq, H.; Faisal, M.; Siyal, A.N.; Haider, A. Synth. Commun. 2017, 47, 1193.
[8]
Totobenazara, J.; Burke, A. J. Tetrahedron Lett. 2015, 56, 2853.
[9]
(a) Kalra, P.; Kaur, R.; Singh, G.; Singh, H.; Singh, G.; Pawan; Kaur, G.; Singh, J. J. Organomet. Chem. 2021, 944, 121846.
[9]
(b) Anbarasan, P.; Yadagiri, D.; Rajasekar, S. Synthesis 2014, 46, 3004.
[10]
(a) Noshiranzadeh, N.; Emami, M.; Bikas, R.; Kozakiewicz, A. New J. Chem. 2017, 41, 2658.
[10]
(b) Kim, W.; Kang, M.; Lee, J.; Jeon, M.; Lee, S.; Lee, J.; Choi, B.; Cal, P. M. S. D.; Kang, S.; Kee, J.; Bernardes, G. J. L.; Rohde, J.; Choe, W.; Hong, S. J. Am. Chem. Soc. 2017, 139, 12121.
[10]
(c) Liu, Z.; Hao, W.; Gao, W.; Zhu, G.; Li, X.; Tong, L.; Tang, B. Sci. China Chem. 2019, 62, 1001.
[11]
(a) Khalili, D.; Kavoosi, L.; Khalafi-Nezhad, A. Synlett 2019, 30, 2136.
[11]
(b) Talha, A.; Mourhly, A.; Tachallait, H.; Driowya, M.; El Hamidi, A.; Arshad, S.; Karrouchi, K.; Arsalane, S.; Bougrin, K. Tetrahedron 2021, 90, 132215.
[11]
(c) Alonso, F.; Moglie, Y.; Radivoy, G. Acc. Chem. Res. 2015, 48, 2516.
[11]
(d) Rani, G. S.; Vijay, M.; Prabhavathi Devi, B. L. A. ChemistrySelect 2019, 4, 10133.
[11]
(e) Bhaskaruni, S. V. H. S.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. Arabian J. Chem. 2020, 13, 1142.
[11]
(f) Rakhshanipour, M.; Eshghi, H.; Bakavoli, M. Appl. Organomet. Chem. 2020, 34, e5426.
[11]
(g) Tian, A; Luo, X.; Ren, Z.; Zhao, J.; Wang, L. New J. Chem. 2021, 45, 9614.
[12]
Nasrollahzadeh, M.; Issaabadi, Z.; Tohidi, M. M.; Mohammad Sajadi, S. Chem. Rec. 2018, 18, 165.
[13]
(a) Naeimi, H.; Shaabani, R. Ultrason. Sonochem. 2017, 34, 246.
[13]
(b) Gupta, A.; Jamatia, R.; Patil, R. A.; Ma, Y.-R.; Pal, A. K. ACS Omega 2018, 3, 7288.
[13]
(c) Mirza-Aghayan, M.; Saeedi, M.; Boukherroub, R. Appl. Organomet. Chem. 2020, 34, 5928.
[14]
(a) Salam, N.; Sinha, A.; Roy, A. S.; Mondal, P.; Jana, N. R.; Islam, S. M. RSC Adv. 2014, 4, 10001.
[14]
(b) Xiong, X.; Chen, H.; Tang, Z.; Jiang, Y. RSC Adv. 2014, 4, 9830.
[14]
(c) Ghadamyari, Z.; Khojastehnezhad, A.; Seyedi, S. M.; Taghavi, F.; Shiri, A. ChemistrySelect 2020, 5, 10233.
[14]
(d) Deilam, R.; Moeinpour, F.; Mohseni-Shahri, F. S. Monatsh. Chem. 2020, 151, 1153.
[14]
(e) Kumar, A.; Verma, S.; Pathak, D. D. J. Environ. Chem. Eng. 2021, 9, 105791.
[15]
(a) Huang, Q.; Zhou, L.; Jiang, X.; Zhou, Y.; Fan, H.; Lang, W. ACS Appl. Mater. Interfaces 2014, 6, 13502.
[15]
(b) Zhou, L.; Lang, W.; Jiang, X.; Huang, Q.; Yin, M. Chin. J. Org. Chem. 2015, 35, 2340. (in Chinese)
[15]
( 周丽梅, 郎文成, 蒋晓慧, 黄强, 尹梦云, 有机化学, 2015, 35, 2340.)
[16]
Saúl, N.; Elisa, L.; Edgar, M.; Luisa, F.; Loredo-Carrillo, Silvia, L. C. Curr. Org. Chem. 2020, 24, 536.
[17]
(a) Sharma, N.; Choudhary, A.; Kaur, M.; Sharma, C.; Paul, S.; Gupta, M. RSC Adv. 2020, 10, 30048.
[17]
(b) Sultana, S.; Mech, S. D.; Hussain, F. L.; Pahari, P.; Borah, G.; Gogoi, P. K. RSC Adv. 2020, 10, 23108.
[17]
(c) Rout, L.; Kumar, A.; Dhaka, R. S.; Reddy, G. N.; Giri, S.; Dash, P. Appl. Catal., A 2017, 538, 107.
[18]
(a) Wang, Y.; Liu, J.; Xia, C. Adv. Synth. Catal., 2011, 353, 1534.
[18]
(b) Sharghi, H.; Beyzavi, M. H.; Safavi, A.; Doroodmand, M. M.; Khalifeh, R. Adv. Synth. Catal. 2009, 351, 2391.
[18]
(c) Spiteri, C.; Moses, J. E. Angew. Chem., Int. Ed. 2010, 49, 31.
文章导航

/