研究论文

新型泰乐菌素衍生物的设计合成和活性评价

  • 王焕焕 ,
  • 杨璞 ,
  • 翟洪进 ,
  • 张烁 ,
  • 曹亚权 ,
  • 杨莹雪 ,
  • 吴春丽
展开
  • a 郑州大学药学院 郑州 450001
    b 新药创制与药物安全性评价河南省协同创新中心 郑州 450001
    c 教育部药物制备关键技术重点实验室 郑州 450001

收稿日期: 2021-07-24

  修回日期: 2021-08-29

  网络出版日期: 2022-02-24

基金资助

国家重点研究开发(2017YFD0501400)

Design, Synthesis and Activity Evaluation of New Tylosin Derivatives

  • Huanhuan Wang ,
  • Pu Yang ,
  • Hongjin Zhai ,
  • Shuo Zhang ,
  • Yaquan Cao ,
  • Yingxue Yang ,
  • Chunli Wu
Expand
  • a School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001
    b Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001
    c Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001
* Corresponding author. E-mail:

Received date: 2021-07-24

  Revised date: 2021-08-29

  Online published: 2022-02-24

Supported by

National Key Research and Development Project of China(2017YFD0501400)

摘要

泰乐菌素作为16元大环内酯类抗生素的重要成员之一, 被广泛用于治疗由革兰氏阳性菌和支原体引起的感染性疾病, 对革兰氏阴性菌和耐药菌引起的感染性疾病没有明显治疗效果. 目前扩大泰乐菌素的抗菌谱是对其进行结构改造的目的之一. 以泰乐菌素以及其水解产物脱碳霉糖泰乐菌素(Desmycosin)和5-O-碳霉胺糖泰乐内酯(OMT)为母核, 对其C-20位修饰改造, 并引入含3-喹啉或3-吡啶的侧链, 设计合成了18个新型泰乐菌素半合成衍生物. 目标化合物均经核磁共振氢谱(1H NMR)、核磁共振碳谱(13C NMR)和高分辨质谱仪(HRMS)进行了结构确证. 体外抗敏感菌活性表明, 化合物20-脱氧-20-{N-对氟苄基-N-[1-(3-喹啉基)-1H-1,2,3-三唑-4-基]甲氨基}-5-O-碳霉胺糖基泰乐内酯(4g)表现最为突出, 化合物4g对金黄色葡萄球菌和大肠杆菌的最小抑菌浓度(MIC)为<0.0625和4 μg•mL–1; 体外抗耐药菌活性表明, 化合物4g对溶血性葡萄球菌和大肠杆菌的最小抑菌浓度分别为<0.0625和8 μg•mL–1. 这为进一步结构优化和发现抗菌谱更广、抗菌活性更高的新型泰乐菌素衍生物提供了理论依据.

本文引用格式

王焕焕 , 杨璞 , 翟洪进 , 张烁 , 曹亚权 , 杨莹雪 , 吴春丽 . 新型泰乐菌素衍生物的设计合成和活性评价[J]. 有机化学, 2022 , 42(2) : 557 -572 . DOI: 10.6023/cjoc202107050

Abstract

Tylosin, as one of the important members of 16 membered macrolide antibiotics, has been widely used in the treatment of infectious diseases caused by gram-positive bacteria and mycoplasma, but has little therapeutic effect on infectious diseases caused by gram-negative bacteria and drug-resistant bacteria. At present, one of the purposes modifying tylosin is to expand its antibacterial spectrum. In this paper, using tylosin and its hydrolysate decarbomycin tylosin (desmycosin) and 5-O-mycaminosyltylonolide (OMT) as mother nucleus, 18 new tylosin semisynthetic derivatives were designed and synthesized by modifying the C-20 position, introducing side chain containing 3-quinoline or 3-pyridine, and then their antibacterial activities were evaluated. The target compounds were confirmed by 1H NMR, 13C NMR and HRMS. The in vitro anti-sensitive bacteria activity showed that 20-deoxy-20-(N-p-fluorobenzyl-N-(1-(3-quinolyl)-1H-1,2,3-triazol-4-yl)methylamino)-5-O-my- caminosyltylonolide (4g) performed the most prominently. Minimum inhibitory concentration (MIC) values of compound 4g against S. aureus and E. coli were < 0.0625 and 4 μg•mL–1. The in vitro anti-drug resistant bacteria activity showed that MIC values of compound 4g against S. hemolyticus and E. coli were < 0.0625 and 8 μg•mL–1. This provides a theoretical basis for further structural optimization and discovery of novel tylosin derivatives with wider antibacterial spectrum and better antibacterial activity.

参考文献

[1]
Blondeau, J. M. Expert. Opin. Pharmaco. 2002, 3, 1131.
[2]
Culic, O.; Erakovic, V.; Parnham, M. J. Eur. J. Pharmacol. 2001, 429, 209.
[3]
Kirst, H. A. Prog. Med. Chem. 1994, 31, 265.
[4]
Clancy, J.; Dib-Hajj, F.; Petitpas, J. W. Antimicrob. Agents Chemother. 1997, 41, 23.
[5]
Przybylski, P. Curr. Org. Chem. 2011, 15, 328.
[6]
Arsic, B.; Barber, J.; Cikos, A. Int. J. Antimicrob. Agents 2018, 51, 283.
[7]
Kirst, H. A. Expert Opin. Invest. Drugs 1997, 6, 103.
[8]
Hamill, R. L.; Haney, M. E.; Stamper, M.; Wiley, P. F. Antibiot. Chemother. 1961, 11, 328.
[9]
Blondeau, J. M. Expert Opin. Pharmacother. 2002, 3, 1131.
[10]
Culic, O.; Erakovic, V.; Parnham, M. J. Eur. J. Pharmacol. 2001, 429, 209.
[11]
Tsutsui, A.; Hirose, T.; Ishiyama, A. J. Antibiot. 2013, 66, 191.
[12]
Fu, H.; Marquez, S.; Gu, X. Bioorg. Med. Chem. Lett. 2006, 16, 1259.
[13]
Pan, H.-L. Chem. Eng. Equip. 2012, 9, 12. (in Chinese)
[13]
( 潘海龙, 化学工程与装备, 2012, 9, 12.)
[14]
Kolb, H.C.; Finn, M. G.; Shapless, K. B. Angew. Chern., Int. Ed. 2001, 40, 11.
[15]
Mizoguchi, H.; Watanabe, R.; Minami, S.; Oikawa, H.; Oguri, H. ChemInform 2015. 13, 5955.
[16]
Sugawara, A.; Maruyama, H.; Shibusawa, S. J. Antibiot. 2017, 70, 878.
[17]
Dunkle, J. A.; Xiong, L.; Mankin, A. S. PNAS 2010, 107, 17157.
[18]
Kirst, H. A.; Toth, J. E.; Wind, J. A. J Antibiot. 1987, 40, 823.
[19]
Shun, J. K.; Tsutomu, T.; Sumio, U. B. Chem. Soc. Jpn. 1992, 65, 3405.
[20]
Lorenc, J.; Dyminska, L.; Mohmed, A. F. A. J. Chem. Phys. 2007, 334, 90.
[21]
Zhuang, W.; Liu, H.; Li, J.; Chen, L.; Wang, G. Front. Microb. 2017, 8, 2573.
文章导航

/