研究论文

基于9,9'-螺二芴和萘的纯碳氢主体材料

  • 郑琦 ,
  • 文亚 ,
  • 屈扬坤 ,
  • 朱元皓 ,
  • 冯敏强 ,
  • 蒋佐权
展开
  • 苏州大学功能纳米与软物质研究院 江苏省碳基功能材料与器件重点实验室 江苏苏州 215123

收稿日期: 2021-08-13

  修回日期: 2021-09-14

  网络出版日期: 2022-02-24

基金资助

国家自然科学基金(51773141); 国家自然科学基金(51873139); 国家自然科学基金(61961160731); 国家自然科学基金(51821002)

Pure Hydrocarbon Host Materials Based on 9,9'-Spirobifluorene/Naphthalene Hybrid

  • Qi Zheng ,
  • Ya Wen ,
  • Yangkun Qu ,
  • Yuanhao Zhu ,
  • Mankeung Fung ,
  • Zuoquan Jiang
Expand
  • Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123
* Corresponding authors. E-mail: ;

Received date: 2021-08-13

  Revised date: 2021-09-14

  Online published: 2022-02-24

Supported by

National Natural Science Foundation of China(51773141); National Natural Science Foundation of China(51873139); National Natural Science Foundation of China(61961160731); National Natural Science Foundation of China(51821002)

摘要

利用磷光有机发光二极管的主客体掺杂结构有助于避免三重态激子浓度猝灭, 从而提高器件性能. 9,9'-螺二芴(SBF)及其衍生物具有独特的正交构型和刚性骨架, 具有高玻璃化转变温度、高三线态能级和用作主体材料的潜力. 通过引入萘环合成并表征了两种基于SBF的纯碳氢化合物(PHC)磷光发光器件的主体材料, 命名为1,4-SBF-Nap和1,8-Oct-Nap. 其中, 1,8-Oct-Nap分子存在一个有趣的环化反应, 形成八原子环结构而不是一般的SBF. 以Ir(MDQ)2(acac)为客体, 成功制备了基于这两种主体的红光器件, 最大外量子效率(EQE)分别为15.0%和13.7%, 证明PHC主体材料在设计上的多样性.

本文引用格式

郑琦 , 文亚 , 屈扬坤 , 朱元皓 , 冯敏强 , 蒋佐权 . 基于9,9'-螺二芴和萘的纯碳氢主体材料[J]. 有机化学, 2022 , 42(2) : 572 -579 . DOI: 10.6023/cjoc202108017

Abstract

The utilization of host-guest doped structure of phosphorescent organic light-emitting diodes helps avoid the triplet exciton concentration quenching, thus improve the device performance. 9,9'-Spirobifluorene (SBF) and its derivatives with a unique orthogonal configuration and rigid framework, exhibit high glass transition temperature, high triplet energy levels, and potential to be used as host materials. In this work, two types of SBF-based pure hydrocarbon (PHC) phosphorescent light-emitting device host materials were synthesized and characterized by introducing naphthalene, named 1,4-SBF-Nap and 1,8-Oct-Nap. 1,8-Oct-Nap has an interestingly cyclized cites and resulting in an octatomic ring structure instead of normal SBF. Co-evaporating with bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium(III) (Ir(MDQ)2(acac)), the red-light devices based on these two hosts were successfully fabricated. The maximum external quantum efficiencies (EQE) were 15.0% and 13.7% for 1,4-SBF-Nap and 1,8-Oct-Nap, respectively. The diversity of the PHC host materials can be expanded by the utilization of naphthalene.

参考文献

[1]
Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395(6698), 151.
[2]
Pu, Y.-J.; Nakata, G.; Satoh, F.; Sasabe, H.; Yokoyama, D.; Kido, J. Adv. Mater. 2012, 24(13), 1765.
[3]
Cui, L.-S.; Dong, S.-C.; Liu, Y.; Li, Q.; Jiang, Z.-Q.; Liao, L.-S. J. Mater. Chem. C 2013, 1(25), 3967.
[4]
Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40(5), 2943.
[5]
Quinton, C.; Thiery, S.; Jeannin, O.; Tondelier, D.; Geffroy, B.; Jacques, E.; Rault-Berthelot, J.; Poriel, C. ACS Appl. Mater. Interfaces 2017, 9(7), 6194.
[6]
Maheshwaran, A.; Sree, V. G.; Park, H.-Y.; Kim, H.; Han, S. H.; Lee, J. Y.; Jin, S.-H. Adv. Funct. Mater. 2018, 28(36), 1802945.
[7]
Poriel, C.; Rault-Berthelot, J.; Thiery, S.; Quinton, C.; Jeannin, O.; Biapo, U.; Tondelier, D.; Geffroy, B. Chem.-Eur. J. 2016, 22(50), 17930.
[8]
Bai, Q.; Liu, H.; Yao, L.; Shan, T.; Li, J.; Gao, Y.; Zhang, Z.; Liu, Y.; Lu, P.; Yang, B.; Ma, Y. ACS Appl. Mater. Interfaces 2016, 8(37), 24793.
[9]
Poriel, C.; Rault-Berthelot, J. J. Mater. Chem. C 2017, 5(16), 3869.
[10]
Lin, N.; Qiao, J.; Duan, L.; Li, H.; Wang, L.; Qiu, Y. J. Phys. Chem. C 2012, 116(36), 19451.
[11]
Lin, N.; Qiao, J.; Duan, L.; Wang, L.; Qiu, Y. J. Phys. Chem. C 2014, 118(14), 7569.
[12]
Cui, L.-S.; Xie, Y.-M.; Wang, Y.-K.; Zhong, C.; Deng, Y.-L.; Liu, X.-Y.; Jiang, Z.-Q.; Liao, L.-S. Adv. Mater. 2015, 27(28), 4213.
[13]
Shao, J.; Zhong, Y. Chin. J. Org. Chem. 2021, 41(4), 1447. (in Chinese)
[13]
( 邵将洋; 钟羽武, 有机化学, 2021, 41(4), 1447.)
[14]
Clarkson, R. G.; Gomberg, M. J. Am. Chem. Soc. 1930, 52(7), 2881.
[15]
Zeng, W.; Lai, H.-Y.; Lee, W.-K.; Jiao, M.; Shiu, Y.-J.; Zhong, C.; Gong, S.; Zhou, T.; Xie, G.; Sarma, M.; Wong, K.-T.; Wu, C.-C.; Yang, C. Adv. Mater. 2018, 30(5), 1704961.
[16]
Liu, H.; Liu, Z.; Li, G.; Huang, H.; Zhou, C.; Wang, Z.; Yang, C. Angew. Chem., nt. Ed. 2021, 60(22), 12376.
[17]
Jiang, Z.; Yao, H.; Zhang, Z.; Yang, C.; Liu, Z.; Tao, Y.; Qin, J.; Ma, D. Org. Lett. 2009, 11(12), 2607.
[18]
Jiang, Z.; Liu, Z.; Yang, C.; Zhong, C.; Qin, J.; Yu, G.; Liu, Y. Adv. Funct. Mater. 2009, 19(24), 3987.
[19]
Sicard, L. J.; Li, H.-C.; Wang, Q.; Liu, X.-Y.; Jeannin, O.; Rault- Berthelot, J.; Liao, L.-S.; Jiang, Z.-Q.; Poriel, C. Angew. Chem., nt. Ed. 2019, 58(12), 3848.
[20]
Sicard, L.; Quinton, C.; Peltier, J.-D.; Tondelier, D.; Geffroy, B.; Biapo, U.; Métivier, R.; Jeannin, O.; Rault-Berthelot, J.; Poriel, C. Chem.-Eur. J. 2017, 23(32), 7719.
[21]
Poriel, C.; Sicard, L.; Rault-Berthelot, J. Chem. Commun. 2019, 55 (95), 14238.
[22]
Poriel, C.; Rault-Berthelot, J. Acc. Chem. Res. 2018, 51(8), 1818.
[23]
Dumur, F.; Bui, T.-T.; Péralta, S.; Lepeltier, M.; Wantz, G.; Sini, G.; Goubard, F.; Gigmes, D. RSC Adv. 2016, 6(65), 60565.
[24]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision C. 01, Wallingford, CT, 2016.
[25]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77(18), 3865.
[26]
Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32(7), 1456.
[27]
Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7(18), 3297.
[28]
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33(5), 580.
[29]
Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14(1), 33.
[30]
Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393(1), 51.
[31]
Demeter, A.; Timári, G.; Kotschy, A.; Bérces, T. Tetrahedron Lett. 1997, 38(29), 5219.
文章导航

/