综述与进展

CF3Br参与的三氟甲基化反应研究进展

  • 马然松 ,
  • 邓周斌 ,
  • 王克虎 ,
  • 黄丹凤 ,
  • 胡雨来 ,
  • 闾肖波
展开
  • a 西北师范大学化学化工学院 兰州 730000
    b 上海恩氟佳科技有限公司 上海 201321

收稿日期: 2021-08-31

  修回日期: 2021-10-05

  网络出版日期: 2022-02-24

基金资助

国家自然科学基金(22061037); 上海恩氟佳科技有限公司资助项目.

Research Progress of Trifluoromethylation Involving CF3Br

  • Ransong Ma ,
  • Zhoubin Deng ,
  • Kehu Wang ,
  • Danfeng Huang ,
  • Yulai Hu ,
  • Xiaobo Lü
Expand
  • a College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730000
    b Shanghai Sinofluoro Chemicals Co., Ltd., Shanghai 201321
* Corresponding author. E-mail:

Received date: 2021-08-31

  Revised date: 2021-10-05

  Online published: 2022-02-24

Supported by

National Natural Science Foundation of China(22061037); Shanghai Sinofluoro Chemicals Co., Ltd.

摘要

三氟甲基化反应是向有机物中引入氟原子的重要方法. 综述了近年来以CF3Br为三氟甲基源的三氟甲基化反应研究进展, 重点介绍了各类反应涉及到的具体方法、每种方法的特点、适用范围及可能的机理, 并对CF3Br作为三氟甲基源的三氟甲基化反应前景作出展望.

本文引用格式

马然松 , 邓周斌 , 王克虎 , 黄丹凤 , 胡雨来 , 闾肖波 . CF3Br参与的三氟甲基化反应研究进展[J]. 有机化学, 2022 , 42(2) : 353 -362 . DOI: 10.6023/cjoc202108058

Abstract

Trifluoromethylation reaction is a critical method to install fluorine atom into organic molecules. The recent advances in trifluoromethylation with CF3Br as trifluoromethyl source are summarized. Various trifluoromethylation methods involving CF3Br are presented. Their characteristics, scope and limitations as well as the reaction mechanism are discussed in detail, and a perspective on the further development by using CF3Br as trifluoromethyl source is put forward.

参考文献

[1]
(a) Filler, R.; Kobayashi, Y. Biomedicinal Aspects of Fluorine Chemistry, 1st Ed., Elsevier, Amsterdam, 1982.
[1]
(b) Hiyama, T. Organofluorine Compounds Chemistry and Applications, Springer, Berlin, 2000.
[1]
(c) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell, Chichester, U.K., 2009.
[1]
(d) Kirsch, P.Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd Ed., Wiley-VCH, Weinheim, Germany, 2013.
[1]
(e) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
[2]
Inoue, M.; Sumii, Y.; Shibata, N. ACS Omega 2020, 5, 10633.
[3]
Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceňa, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[4]
(a) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757.
[4]
(b) Dilman, A. D.; Levin, V. V. Eur. J. Org. Chem. 2011, 76, 831.
[4]
(c) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
[4]
(d) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
[4]
For recent examples see:
[4]
(e) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Munoz, S.; Olah, G. A. J. Org. Chem. 2013, 78, 3300.
[4]
(f) Sanhueza, I. A; Bonney, K. J.; Nielsen, M. C.; Schoenebeck, F. J. Org. Chem. 2013, 78, 7749.
[4]
(g) Li, X.; Zhao, J.; Zhang, L.; Hu, M.; Wang, L.; Hu, J. Org. Lett. 2015, 17, 298.
[5]
(a) Umemoto, T. Chem. Rev. 1996, 96, 1757.
[5]
(b) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
[5]
(c) Barata-Vallejo, S.; Lantaño, B.; Postigo, A. Chem. Eur. J. 2014, 20, 16806.
[5]
(d) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
[5]
(e) Prieto, A.; Baudoin, O.; Bouyssi, D.; Monteiro, N. Chem. Commun. 2016, 52, 869.
[6]
(a) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
[6]
(b) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
[6]
(c) Herrmann, A. T.; Smith, L. L.; Zakarian, A. J. Am. Chem. Soc. 2012, 134, 6976.
[6]
(d) Li, Y.; Wu, L.; Neumann, H.; Beller, M. Chem. Commun. 2013, 49, 2628.
[6]
(e) Woźniak, L.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678.
[6]
(f) Xiao, H.-W.; Zhang, Z.-Z.; Fang, Y.-W.; Zhu, L.; Li, C.-Z. Chem. Soc. Rev. 2021, 50, 6308.
[6]
(g) Qiu, Y.; Wei, F.; Ye, L.; Zhao, M. Chin. J. Org. Chem. 2021, 41, 1821. (in Chinese)
[6]
( 邱云亮, 魏凤姣, 叶鎏, 赵旻玥, 有机化学, 2021, 41, 1821.)
[7]
(a) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.
[7]
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[7]
(c) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
[8]
(a) Xie, Q.; Li, L.; Zhu, Z.; Zhang, R.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2018, 57, 13211.
[8]
(b) García-Domínguez, A.; West, T. H.; Primozic, J. J.; Grant, K. M.; Johnston, C. P.; Cumming, G. G.; Leach, A. G.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2020, 142, 14649.
[8]
(c) Li, L.; Ni, C.; Xie, Q.; Hu, M.; Wang, F.; Hu, J. Angew. Chem., Int. Ed. 2017, 56, 9971.
[8]
(d) Cheung, K. P. S.; Tsui, G. C. Org. Lett. 2017, 19, 2881.
[8]
(e) Shang, M.; Sun, S.-Z.; Wang, H.-L.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 10439.
[8]
(f) Johnston, C. P.; West, T. H.; Dooley, R. E.; Reid, M.; Jones, A. B.; King, E. J.; Leach, A. G.; Jones, G. C. L. J. Am. Chem. Soc. 2018, 140, 11112.
[8]
(g) Zhao, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2020, 142, 19480.
[8]
(h) Zhang, Z.; He, J.; Zhu, L.; Xiao, H.; Fang, Y.; Li, C. Chin. J. Chem. 2020, 38, 924.
[9]
(a) Gao, C.; Li, B.; Geng, X.; Zhou, Q.; Zhang, X.; Fan, X. Green Chem. 2019, 21, 5113.
[9]
(b) Chen, Y.; Ma, G.; Gong, H. Org. Lett. 2018, 20, 4677.
[9]
(c) Gao, X.; Geng, Y.; Han, S.; Liang, A.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2018, 59, 1551.
[9]
(d) Zhang, B.; Peng, Q.; Guo, D.; Wang, J. Org. Lett. 2020, 22, 443.
[9]
(e) Frűh, N.; Togni, A. Angew. Chem., Int. Ed. 2014, 53, 10813.
[9]
(f) Zeng, H.; Luo, Z.; Han, X.; Li, C.-J. Org. Lett. 2019, 21, 5948.
[10]
(a) Zhang, C. Org. Biomol. Chem. 2014, 12, 6580.
[10]
(b) Chen, L.; Ma, P.; Yang, B.; Zhao, X.; Huang, X.; Zhang, J. Chem. Commun. 2021, 57, 1030.
[10]
(c) Verhoog, S.; Kee, C. W.; Wang, Y.; Khotavivattana, T.; Wilson, T. C.; Kersemans, V.; Smart, S.; Tredwell, M.; Davis, B. G.; Gouverneur, V. J. Am. Chem. Soc. 2018, 140, 1572.
[10]
(d) Gietter-Burch, A. A. S.; Devannah, V.; Watson, D. A. Org. Lett. 2017, 19, 2957.
[11]
(a) Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 14965.
[11]
(b) Liu, K.-J.; Wang, Z.; Lu, L.-H.; Chen, J.-Y.; Zeng, F.; Lin, Y.-W.; Cao, Z.; Yu, X.; He, W.-M. Green Chem. 2021, 23, 496.
[11]
(c) Jana, S.; Verma, A.; Kadu, R.; Kumar, S. Chem. Sci. 2017, 8, 6633.
[11]
(d) Zhang, L.; Zhang, G.; Wang, P.; Li, Y.; Lei, A. Org. Lett. 2018, 20, 7396.
[11]
(e) Zhang, S.; Li, L.; Zhang, J.; Zhang, J.; Xue, M.; Xu, K. Chem. Sci. 2019, 10, 3181.
[11]
(f) Sun, X.; Ma, H.-X.; Mei, T.-S.; Fang, P.; Hu, Y. Org. Lett. 2019, 21, 3167.
[12]
(a) Rozen, S.; Hagooly, A. In Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Hoboken, NJ, 2005.
[12]
(b) Beckers, H.; Bu?rger, H.; Bursch, P.; Ruppert, I. J. Organomet. Chem. 1986, 316, 41.
[12]
(c) Tordeux, M.; Langlois, B.; Wakselman, C. J. Org. Chem. 1989, 54, 2452.
[12]
(d) Teruo, U.; Sumi, I. Tetrahedron Lett. 1990, 31, 3579.
[13]
Sibille, S.; d’Incan, E.; Leport, L.; Perichon, J. Tetrahedron Lett. 1986, 27, 3129.
[14]
Sibille, S.; Mcharek, S.; Perichon, J. Tetrahedron 1989, 45, 1423.
[15]
Prakash, G. K. S.; Deffieux, D.; Yudin, A. K.; Olah, G. A. Synlett 1994, 1057.
[16]
Francèse, C.; Tordeux, M.; Wakselman, C. J. Chem. Soc., Chem. Commun. 1987, 642.
[17]
Francèse, C.; Tordeux, M.; Wakselman, C. Tetrahedron Lett. 1988, 29, 1029.
[18]
Fujiu, M.; Nakamura, Y.; Serizawa, H.; Aikawa, K.; Ito, S.; Mikami, K. Eur. J. Org. Chem. 2012, 7043.
[19]
(a) Chen, Y.-H.; Knochel, P. Angew. Chem., Int. Ed. 2008, 47, 7648.
[19]
(b) Chen, Y.-H.; Sun, M.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 2236.
[20]
Grobe, J.; Hegge, J. Synlett 1995, 641.
[21]
Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195.
[22]
Pawelke, G. J. Fluorine Chem. 1989, 42, 429.
[23]
Il'chenko, A. Y. Sci. Synth. 2015, 18, 1135.
[24]
Bűrger, H.; Dittmar, T.; Pawelke, G. J. Fluorine Chem. 1995, 70, 89.
[25]
Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536.
[26]
Tordeux, M.; Langlois, B.; Wakselman, C. J. Chem. Soc., Perkin Trans. 1 1990, 2293.
[27]
Wakselman, C.; Tordeux, M.; Clavel, J.-L.; Langlois, B. J. Chem. Soc., Chem. Commom. 1991, 993.
[28]
Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744. (in Chinese)
[28]
( 张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
[29]
Tang, R.-Y.; Zhong, P.; Lin, Q.-L. J. Fluorine Chem. 2006, 127, 948.
[30]
Qi, Q.; Shen, Q.; Lu, L. J. Fluorine Chem. 2012, 133, 115.
[31]
(a) Dolbier, W. R. Chem. Rev. 1996, 96, 1557.
[31]
(b) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
[31]
(c) Li, M.; Kang, H.; Xue, X.-S.; Cheng, J.-P. Acta Chim. Sinica 2018, 76, 988. (in Chinese)
[31]
( 李曼, 康会英, 薛小松, 程津培, 化学学报, 2018, 76, 988.)
[32]
Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270.
[33]
Chen, Q.-Y.; Yang, Z.-Y.; Zhao, C.-X.; Qiu, Z.-M. J. Chem. Soc., Perkin Trans. 1 1988, 563.
[34]
Natte, K.; Jagadeesh, R. V.; He, L.; Rabeah, J.; Chen, J.; Taeschler, C.; Ellinger, S.; Zaragoza, F; Neumann, H.; Bűckner, A.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 2782.
[35]
He, L.; Natte, K.; Rabeah, J.; Taeschler, C.; Neumann, H.; Bűckner, A.; Beller, M. Angew. Chem., Int. Ed. 2015, 54, 4320.
[36]
(a) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 12270.
[36]
(b) Zhao, X.; Tu, H.-Y.; Guo, L.; Zhu, S.; Qing, F.-L.; Chu, L. Nat. Commun. 2018, 9, 3488.
[37]
Zhang, K.-F.; Bian, K.-J.; Li, C.; Sheng, J.; Li, Y.; Wang, X.-S. Angew. Chem., Int. Ed. 2019, 58, 5069.
[38]
Zhang, S.; Rotta-Loria, N.; Weniger, F.; Rabeah, J.; Neumann, H.; Taeschler, C.; Beller, M. Chem. Commun. 2019, 55, 6723.
[39]
Li, Y.; Neumann, H.; Beller, M. Chem. Eur. J. 2020, 26, 6784.
[40]
Liu, Y.; Lin, Q.; Xiao, Z.; Zheng, C.; Guo, Y.; Chen, Q.-Y.; Liu, C. Chem. Eur. J. 2019, 25, 1824.
[41]
Konduru, N. K.; Dey, S.; Sajid, M.; Owais, M.; Ahmed, N. Eur. J. Med. Chem. 2013, 59, 23.
[42]
Li, Q.; Fan, W.; Peng, D.; Meng, B.; Wang, S.; Huang, R.; Liu, S.; Li, S. ACS Catal. 2020, 10, 4012.
[43]
Ren, Y.-Y.; Zheng, X.; Zhang, X. Synlett 2018, 29, 1028.
[44]
Kitazume, T.; Ishikawa, N. J. Am. Chem. Soc. 1985, 107, 5186.
文章导航

/