研究论文

1,3-二氢-3-亚烷基-吲哚-2-酮的膦催化合成研究

  • 李婧婕 ,
  • 王宇豪 ,
  • 孟甜甜 ,
  • 黄毅勇
展开
  • 武汉理工大学化学化工与生命科学学院 武汉 430070

收稿日期: 2022-01-19

  修回日期: 2022-03-16

  网络出版日期: 2022-03-30

基金资助

国家自然科学基金(21772151); 国家自然科学基金(22072111)

Phosphine-Catalyzed Synthesis of 1,3-Dihydro-3-alkylidene-2H-indol-2-ones

  • Jingjie Li ,
  • Yuhao Wang ,
  • Tiantian Meng ,
  • Yiyong Huang
Expand
  • School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070

Received date: 2022-01-19

  Revised date: 2022-03-16

  Online published: 2022-03-30

Supported by

National Natural Science Foundation of China(21772151); National Natural Science Foundation of China(22072111)

摘要

报道了一类三(4-甲氧基苯基)膦催化联烯酰亚胺与吲哚-2-酮之间的迈克尔加成/双键移位串联反应. 该反应条件温和, 操作简单, 产物收率较高, 具有较好的底物适应性和化学选择性, 为1,3-二氢-3-亚烷基-吲哚-2-酮骨架的构建提供了一种有效的新方法, 最后, 还提出了可能的反应历程.

本文引用格式

李婧婕 , 王宇豪 , 孟甜甜 , 黄毅勇 . 1,3-二氢-3-亚烷基-吲哚-2-酮的膦催化合成研究[J]. 有机化学, 2022 , 42(7) : 2222 -2228 . DOI: 10.6023/cjoc202201030

Abstract

A P(4-OMe-C6H4)3-catalyzed Michael addition/double bond migration tandem reaction between allenyl imide and indol-2-ones was developed. This synthetic strategy for diverse 1,3-dihydro-3-alkylidene-2H-indol-2-ones features operationally simple, good substrate scope, high chemoselectivity and mild reaction conditions. The proposed reaction mechanism is also provided.

参考文献

[1]
Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.
[2]
(a) Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. J. Med. Chem. 1998, 41, 2588.
[2]
(b) Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Kunkel, M. W. J. Med. Chem. 2006, 49, 6922.
[2]
(c) Zhang, W.; Go, M.-L. Bioorg. Med. Chem. 2009, 17, 2077.
[2]
(d) Millemaggi, A.; Taylor, R. J. K. Eur. J. Org. Chem. 2010, 2010, 4527.
[3]
Ndolo, K. M.; An, S. J.; Park, K. R.; Lee, H. J.; Yoon, K. B.; Kim, Y.-C.; Han, S.-Y. Biomol. Ther. 2019, 27, 216.
[4]
Jang, J.-P.; Nogawa, T.; Uramoto, M.; Okano, A.; Futamura, Y.; Shimizu, T.; Takahashi, S.; Jang, J.-H.; Ahn, J. S.; Osada, H. J. Antibiot. 2015, 68, 293.
[5]
Otterness, I. G.; Bliven, M. L.; Downs, J. T.; Natoli, E. J.; Hanson, D. C. Cytokine 1991, 3, 277.
[6]
Roth, G. J.; Heckel, A.; Colbatzky, F.; Handschuh, S.; Kley, J.; Lehmann-Lintz, T.; Lotz, R.; Tontsch-Grunt, U.; Walter, R.; Hilberg, F. J. Med. Chem. 2009, 52, 4466.
[7]
Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu, J.-Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.; Tang, C. J. Med. Chem. 2003, 46, 1116.
[8]
(a) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Org. Biomol. Chem. 2012, 10, 5165.
[8]
(b) Boddy, A. J.; Bull, J. A. Org. Chem. Front. 2021, 8, 1026.
[8]
(c) Mei, G.-J.; Shi, F. Chem. Commun. 2018, 54, 6607.
[9]
(a) Dhondge, A. P.; Huang, Y.-X.; Lin, T.; Hsu, Y.-H.; Tseng, S.-L.; Chang, Y.-C.; Chen, H. J. H.; Kuo, M.-Y. J. Org. Chem. 2019, 84, 14061.
[9]
(b) Salem, M. A.; Ragab, A.; Askar, A. A.; El-Khalafawy, A.; Makhlouf, A. H. Eur. J. Med. Chem. 2020, 188, 111977.
[9]
(c) Li, G.; Feng, X.; Du, H. Org. Biomol. Chem. 2015, 13, 5826.
[9]
(d) Sharma, P.; Thummuri, D.; Reddy, T. S.; Senwar, K. R.; Naidu, V. G. M.; Srinivasulu, G.; Bharghava, S. K.; Shankaraiah, N. Eur. J. Med. Chem. 2016, 122, 584.
[9]
(e) Lathourakis, G. E.; Litinas, K. E. J. Chem. Soc., Perkin Trans. 1 1996, 491.
[9]
(f) Maigali, S. S.; El-Hussieny, M.; Soliman, F. M. J. Heterocycl. Chem. 2015, 52, 15.
[9]
(g) Rossetti, A.; Sacchetti, A.; Bonfanti, M.; Roda, G.; Rainoldi, G.; Silvani, A. Tetrahedron 2017, 73, 4584.
[10]
(a) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
[10]
(b) Cai, W.; Huang, Y. Chin. J. Org. Chem. 2021, 41, 3903. (in Chinese)
[10]
( 蔡卫, 黄有, 有机化学, 2021, 41, 3903.)
[10]
(c) Wei, Y.; Shi, M. Org. Chem. Front. 2017, 4, 1876.
[10]
(d) Ni, H.-Z.; Chan, W.-L.; Lu, Y.-X. Chem. Rev. 2018, 118, 9344.
[10]
(e) Guo, H.-C.; Fan, Y.-C.; Sun, Z.-H.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.
[10]
(f) Li, E.-Q.; Huang, Y. Chem. Commun. 2020, 56, 680.
[11]
(a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
[11]
(b) Lu, X. Chin. J. Org. Chem. 2001, 21, 769. (in Chinese)
[11]
( 陆熙炎, 有机化学, 2001, 21, 769.)
[11]
(c) Tang, Q.; Tu, A.; Deng, Z.; Hu, M.; Zhong, W. Chin. J. Org. Chem. 2013, 33, 954. (in Chinese)
[11]
( 唐谦, 涂爱平, 邓真真, 胡梦莹, 钟为慧, 有机化学, 2013, 33, 954.)
[11]
(d) Zhou, R.; Liu, R.; Li, R.; He, Z. Chin. J. Org. Chem. 2014, 34, 2385. (in Chinese)
[11]
( 周荣, 刘蓉芳, 李瑞丰, 贺峥杰, 有机化学, 2014, 34, 2385.)
[11]
(e) Nallapati, S. B.; Chuang, S.-C. Asian J. Org. Chem. 2018, 7, 1743.
[12]
(a) Szeto, J.; Sriramurthy, V.; Kwon, O. Org. Lett. 2011, 13, 5420.
[12]
(b) Li, E.; Xie, P.; Yang, L.; Liang, L.; Huang, Y. Chem.-Asian J. 2013, 8, 603.
[12]
(c) Gandi, V. R.; Lu, Y. Chem. Commun. 2015, 51, 16188.
[12]
(d) Huang, Z.; Yang, X.; Yang, F.; Lu, T.; Zhou, Q. Org. Lett. 2017, 19, 3524.
[13]
(a) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
[13]
(b) Cardoso, A. L.; Beja, A. M.; Silva, M. R.; de los Santos, J. M.; Palacios, F.; Abreu, P. E.; Pais, A. A.C.C.; Pinho e Melo, T. M. V. D. Tetrahedron 2010, 66, 7720.
[13]
(c) Zhou, Q.-F.; Zhang, K.; Kwon, O. Tetrahedron Lett. 2015, 56, 3273.
[13]
(d) Wang, T.; Hoon, D. L.; Lu, Y. Chem. Commun. 2015, 51, 10186.
[13]
(e) Chen, Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Org. Chem. 1998, 63, 5631.
[13]
(f) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2009, 131, 14231.
[13]
(g) Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 4568.
[14]
(a) Meng, X.; Huang, Y.; Zhao, H.; Xie, P.; Ma, J.; Chen, R. Org. Lett. 2009, 11, 991.
[14]
(b) Xing, J.; Lei, Y.; Gao, Y.-N.; Shi, M. Org. Lett. 2017, 19, 2382.
[14]
(c) Wu, L.; Chen, K.; Huang, Y.; Li, E. Asian J. Org. Chem. 2020, 9, 1179.
[14]
(d) Debnath, S.; Kumar, A. S.; Chauhan, S.; Kumara, S. K. C. J. Org. Chem. 2021, 86, 11583.
[15]
(a) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
[15]
(b) Li, E.; Huang, Y. Chem. Commun. 2014, 50, 948.
[15]
(c) Li, N.; Jia, P.; Huang, Y. Chem. Commun. 2019, 55, 10976.
[16]
Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023.
[17]
Tang, X.; Ni, H.; Lu, Y. Org. Chem. Front. 2021, 8, 4485.
[18]
Zhang, J.-Q.; Li, S.-M.; Wu, C.-F.; Wang, X.-L.; Wu, T.-T.; Du, Y.; Yang, Y.-Y.; Fan, L.-L.; Dong, Y.-X.; Wang, J.-T.; Tang, L. Catal. Commun. 2020, 138, 105838.
[19]
Cao, Z.; Wang, Y.; Kalita, S. J.; Schneider, U.; Huang, Y. Angew. Chem., Int. Ed. 2020, 59, 1884.
[20]
Wang, Y.-H.; Zhao, Z.-N.; Kalita, S. J.; Huang, Y.-Y. Org. Lett. 2021, 23, 8147.
[21]
Pang, S.; Yang, X.; Cao, Z.-H.; Zhang, Y.-L.; Zhao, Y.; Huang, Y.-Y. ACS Catal. 2018, 8, 5193.
[22]
(a) Xu, X.-H.; Wang, X.; Liu, G.; Tokunaga, E.; Shibata, N. Org. Lett. 2012, 14, 2544.
[22]
(b) Qiu, B.; Xu, D.; Sun, Q.; Lin, J.; Sun, W. Org. Lett. 2019, 21, 618.
文章导航

/