综述与进展

过渡金属催化不对称环化反应合成七元环化合物研究进展

  • 毛沅浩 ,
  • 高延峰 ,
  • 苗志伟
展开
  • a南开大学化学学院 元素有机化学国家重点实验室 天津 300071
    b天津化学化工协同创新中心 天津 300071

收稿日期: 2022-02-06

  修回日期: 2022-03-23

  网络出版日期: 2022-04-11

基金资助

国家自然科学基金(22071113); 天津市重点研发计划(19YFZCSN00240)

Research Progress on the Asymmetric Cyclization Synthesis of Seven-Membered Rings via Transition Metal Catalysis

  • Yuanhao Mao ,
  • Yanfeng Gao ,
  • Zhiwei Miao
Expand
  • aState Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
    bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071

Received date: 2022-02-06

  Revised date: 2022-03-23

  Online published: 2022-04-11

Supported by

National Natural Science Foundation of China(22071113); Key Technologies R & D Program of Tianjin City(19YFZCSN00240)

摘要

七元环骨架广泛存在于众多天然产物和药物分子中, 发展高效的七元环化合物不对称合成方法具有重要的研究意义. 综述了自2000年以来采用过渡金属催化环加成反应不对称合成七元环化合物研究进展, 并对该领域的研究前景进行了展望.

本文引用格式

毛沅浩 , 高延峰 , 苗志伟 . 过渡金属催化不对称环化反应合成七元环化合物研究进展[J]. 有机化学, 2022 , 42(7) : 1904 -1924 . DOI: 10.6023/cjoc202202005

Abstract

Seven-membered ring skeletons widely exist in many natural products and drug molecules, and it is of great significance to develop efficient asymmetric synthesis methods for seven-membered ring compounds. The progress in the asymmetric synthesis of seven-membered ring compounds by transition metal-catalyzed cycloaddition reactions since 2000 is reviewed. The future development direction of this field is also prospected.

参考文献

[1]
(a) Watthey, J. W. H.; Stanton, J. L.; Desai, M.; Babiarz, J. E.; Finn, B. M. J. Med. Chem. 1985, 28, 1511.
[1]
(b) McDonald, L. A.; Abbanat, D. R.; Barbieri, L. R.; Bernan, V. S.; Discafani, C. M.; Greenstein, M.; Janota, K.; Korshalla, J. D.; Lassota, P.; Tischler, M.; Carter, G. T. Tetrahedron Lett. 1999, 40, 2489.
[1]
(c) Donnell, A. F.; Michoud, C.; Rupert, K. C.; Han, X.; Aguilar, D.; Frank, K. B.; Fretland, A. J.; Gao, L.; Goggin, B.; Hogg, J. H.; Hong, K.; Janson, C. A.; Kester, R. F.; Kong, N.; Le, K.; Li, S.; Liang, W.; Lombardo, L. J.; Lou, Y.; Lukacs, C. M.; Mischke, S.; Moliterni, J. A.; Polonskaia, A.; Schutt, A. D.; Solis, D. S.; Specian, A.; Taylor, R. T.; Weisel, M.; Remiszewski, S. W. J. Med. Chem. 2013, 56, 7772.
[1]
(d) Xu, J. B.; Zhang, H.; Gan, L. S.; Han, Y. S.; Wainberg, M. A.; Yue, J. M. J. Am. Chem. Soc. 2014, 136, 7631.
[1]
(e) Ni, G.; Zhang, H.; Fan, Y.-Y.; Liu, H. C.; Ding, J.; Yue, J. M. Org. Lett., 2016, 18, 1880.
[1]
(f) Ruan, Q. F.; Jiang, S. Q.; Zheng, X. Y.; Tang, Y. Q.; Yang, B.; Yi, T.; Jin, J.; Cui, H.; Zhao, Z. Chem. Commun. 2020, 56, 1517.
[2]
(a) Carruthers, W. Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford, 1990, Vol. 373.
[2]
(b) Ghosez, L.; Trost, B. M. Stereocontrolled Organic Synthesis, Blackwell Science, Oxford, 1994, pp. 193-233.
[2]
(c) Curran, D. P. Advances in Cycloaddition, JAI Press, Greenwich, 1994, Vol. 1-3.
[2]
(d) Nishiwaki, N. Methods and Applications of Cycloaddition Reactions in Organic Syntheses, Wiley, Hoboken, 2014.
[3]
(a) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
[3]
(b) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307.
[3]
(c) Alcaide, B.; Almendros, P.; Aragoncillo, C. Chem. Soc. Rev. 2010, 39, 783.
[3]
(d) Ljpez, F.; MascareÇas, J. L. Chem. Soc. Rev. 2014, 43, 2904.
[3]
(e) Poplata, S.; Trçster, A.; Zou, Y.; Bach, T. Chem. Rev. 2016, 116, 9748.
[3]
(f) Pellissier, H. Synthesis 2020, 52, 3837.
[3]
(g) Trost, B. M.; Mata, G. Acc. Chem. Res. 2020, 53, 1293.
[3]
(h) Yang, C.; Yang, Z.-X.; Ding, C.-H.; Xu, B.; Hou, X. L. Chem. Rec. 2021, 21, 1442.
[4]
(a) Battiste, M. A.; Pelphrey, P. M.; Wright, D. L. Chem.-Eur. J. 2006, 12, 3438.
[4]
(b) Butenschçn, H. Angew. Chem., Int. Ed. 2008, 47, 5287.
[4]
(c) Harmata, M. Chem. Commun. 2010, 46, 8886.
[5]
(a) Trost, B. M.; Zuo, Z.; Schultz, J. E. Chem.-Eur. J. 2020, 26, 15354.
[5]
(b) Saranya, P. V.; Neetha, M.; Radhika, S.; Anilkumar, G. J. Heterocycl. Chem. 2021, 58, 673.
[6]
Hu, J.-L.; Wang, L.; Xu, H.; Xie, Z.; Tang, Y. Org. Lett. 2015, 17, 2680.
[7]
Wei, L.; Wang, Z.-F.; Yao, L.; Qiu, G.; Tao, H.; Li, H.; Wang, C. J. Adv. Synth. Catal. 2016, 358, 3955.
[8]
Wei, L.; Yao, L.; Wang, Z.-F.; Li, H.; Tao, H.-Y.; Wang, C. J. Adv. Synth. Catal. 2016, 358, 3748.
[9]
Wang, Y.; Zhu, L.; Wang, M.; Xiong, J.; Chen, N.; Feng, X.; Xu, Z.; Jiang, X. Org. Lett. 2018, 20, 6506.
[10]
Zhang, Z. J.; Zhang, L.; Geng, R. L.; Song, J.; Chen, X. H.; Gong, L. Z. Angew. Chem., Int. Ed. 2019, 58, 12190.
[11]
Zhu, X. Q.; Wang, Z. S.; Hou, B. S.; Zhang, H. W.; Deng, C.; Ye, L. W. Angew. Chem., Int. Ed. 2020, 59, 1666.
[12]
(a) Alexakis, A.; Krause, N.; Woodward, S. Copper-Catalyzed Asymmetric Synthesis, Wiley, Hoboken, 2014, pp. 1-2.
[12]
(b) Enthaler, S.; Wu, X. F. Zinc Catalysis Wiley, Hoboken, 2015, pp. 1-4.
[13]
Gulías, M.; Durán, J.; López, F.; Castedo, L.; Mascareñas, J. L. J. Am. Chem. Soc. 2007, 129, 11026.
[14]
Verdugo, F.; Villarino, L.; Durán, J.; Gulías, M.; Mascareñas, J. L.; López, F. ACS Catal. 2018, 8, 6100.
[15]
Shintani, R.; Murakami, M.; Tsuji, T.; Tanno, H.; Hayashi, T. Org. Lett. 2009, 11, 5642.
[16]
(a) Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.
[16]
(b) Guo, C.; Janssen-Müller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 4443.
[17]
Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551.
[18]
Jiang, F.; Yuan, F. R.; Jin, L. W.; Mei, G. J.; Shi, F. ACS Catal. 2018, 8, 10234.
[19]
Cheng, Q.; Xie, J. H.; Weng, Y. C.; You, S. L. Angew. Chem., Int. Ed. 2019, 58, 5739.
[20]
Liu, Y. Z.; Wang, Z.; Huang, Z.; Zheng, X.; Yang, W. L.; Deng, W. P. Angew. Chem., Int. Ed. 2020, 59, 1238.
[21]
Trost, B. M.; Zuo, Z. Angew. Chem., Int. Ed. 2020, 59, 1243.
[22]
Kumari, P.; Liu, W.; Wang, C. J.; Dai, J.; Wang, M. X.; Yang, Q. Q.; Deng, Y. H.; Shao, Z. Chin. J. Chem. 2020, 38, 151.
[23]
Yang, W. L.; Huang, Z.; Liu, Y. Z.; Yu, X.; Deng, W. P. Chin. J. Chem. 2020, 38, 1571.
[24]
Wei, Y.; Liu, S.; Li, M. M.; Li, Y.; Lan, Y.; Lu, L. Q.; Xiao, W. J. J. Am. Chem. Soc. 2019, 141, 133.
[25]
Li, M. M.; Xiong, Q.; Qu, B. L.; Xiao, Y. Q.; Lan, Y.; Lu, L. Q.; Xiao, W. J. Angew. Chem., Int. Ed. 2020, 59, 17429.
[26]
Zheng, X.; Sun, H.; Yang, W. L.; Deng, W. P. Sci. China: Chem. 2020, 63, 911.
[27]
Liu, Y. Z.; Wang, Z.; Huang, Z.; Yang, W. L.; Deng, W. P. Org. Lett. 2021, 23, 948.
[28]
Gao, Y. F.; Zhang, X. G.; Zhang, X. Y.; Miao, Z. W. Org. Lett. 2021, 23, 2415.
[29]
Tsuji, J. Palladium Reagents and Catalysts, Wiley, Hoboken, 2004, pp. 1-26.
[30]
Wender, P. A.; Haustedt, L. O.; Lim, J.; Love, J. A.; Williams, T. J.; Yoon, J. Y. J. Am. Chem. Soc. 2006, 128, 6302.
[31]
Shintani, R.; Nakatsu, H.; Takatsu, K.; Hayashi, T. Chem.-Eur. J. 2009, 15, 8692.
[32]
Feng, J. J.; Lin, T. Y.; Wu, H. H.; Zhang, J. L. J. Am. Chem. Soc. 2015, 137, 3787.
[33]
Guzmán, P. E.; Lian, Y.; Davies, H. M. L. Angew. Chem., Int. Ed. 2014, 53, 13083.
[34]
Xu, G.; Chen, L.; Sun, J. Org. Lett. 2018, 20, 3408.
[35]
Jia, Z. J.; Shan, G.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2018, 57, 14493.
[36]
(a) Huang, L.; Dai, L.-X.; You, S.-L.. J. Am. Chem. Soc. 2016, 138, 5793.
[36]
(b) Huang, L.; Cai, Y.; Zheng, C.; Dai, L. X.; You, S. L. Angew. Chem., Int. Ed. 2017, 56, 10545.
[37]
Chen, Z. C.; Chen, Z.; Yang, Z. H.; Guo, L.; Du, W.; Chen, Y. C. Angew. Chem., Int. Ed. 2019, 58, 15021.
[38]
Yang, W. L.; Ni, T.; Deng, W. P. Org. Lett. 2021, 23, 588.
[39]
Li, Y. Y.; Li, S.; Fan, T.; Zhang, Z. J.; Song, J.; Gong, L. Z. ACS Catal. 2021, 11, 14388.
[40]
Alonso, I.; Faustino, H.; López, F.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2011, 50, 11496.
[41]
Kardile, R. D.; Chao, T. H.; Cheng, M. J.; Liu, R. S. Angew. Chem., Int. Ed. 2020, 59, 10396.
文章导航

/