铑催化羧酸原位生成酰氟的脱羰Suzuki-Miyaura偶联
收稿日期: 2022-03-03
修回日期: 2022-04-02
网络出版日期: 2022-04-11
基金资助
国家重点研发计划(2018FYA0704502); 国家自然科学基金(21931011); 国家自然科学基金(22071241); 中国福建光电信息科学与技术创新实验室(闽都创新实验室)(2021ZZ105)
Rhodium-Catalyzed Decarbonylative Suzuki-Miyaura Cross-Coupling via in-Situ Generation of Acyl Fluorides from Carboxylic Acids
Received date: 2022-03-03
Revised date: 2022-04-02
Online published: 2022-04-11
Supported by
National Key Research and Development Program of China(2018FYA0704502); National Natural Science Foundation of China(21931011); National Natural Science Foundation of China(22071241); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ105)
刘晓洁 , 徐必平 , 苏伟平 . 铑催化羧酸原位生成酰氟的脱羰Suzuki-Miyaura偶联[J]. 有机化学, 2022 , 42(7) : 2184 -2191 . DOI: 10.6023/cjoc202203011
The biaryl frameworks are momentous organic backbones that are commonly occurred in pharmaceutical, functional materials and natural products. By virtue of the distinctive reactivity through state-of-the-art process, decarbonylative couplings, which have bypassed the restriction to specifically substituted (hetero)aryl carboxylic acids of decarboxylative couplings, gradually become unneglected methods in the conversion of carboxylic acid derivatives. Herein, a rhodium-catalyzed decarbonylative Suzuki-Miyaura cross-coupling via in-situ generation strategy of acyl fluorides from carboxylic acids was developed. This protocol shows eminent functional group tolerance with arrays of combinations between carboxylic acid and boronic acid. Furthermore, the reaction offers a new access to those conventionally unattainable biaryl motifs, including natural product and modified drugs.
| [1] | Rodriguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030. |
| [2] | (a) Goossen, L. J.; Rodriguez, N.; Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100. |
| [2] | (b) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Chem. Sci. 2012, 3, 2671. |
| [2] | (c) Larrosa, I.; Cornella, J. Synthesis 2012, 44, 653. |
| [2] | (d) Fu, Z.; Li, Z.; Xiong, Q.; Cai, H. Chin. J. Org. Chem. 2015, 35, 984. (in Chinese) |
| [2] | ( 付拯江, 李兆杰, 熊起恒, 蔡琥, 有机化学, 2015, 35, 984.) |
| [2] | (e) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864; |
| [3] | (a) Yang, J.; Deng, M.; Yu, T. Chin. J. Org. Chem. 2013, 33, 693. (in Chinese) |
| [3] | ( 杨军, 邓敏智, 于涛, 有机化学, 2013, 33, 693.) |
| [3] | (b) Dermenci, A.; Dong, G. Sci. China Chem. 2013, 56, 685. |
| [3] | (c) Guo, L.; Rueping, M. Chemistry 2018, 24, 7794. |
| [3] | (d) Zhao, Q.; Szostak, M. ChemSusChem 2019, 12, 2983. |
| [3] | (e) Wang, Z.; Wang, X.; Nishihara, Y. Chem.-Asian J. 2020, 15, 1234. |
| [3] | (f) Lu, H.; Yu, T. Y.; Xu, P. F.; Wei, H. Chem. Rev. 2021, 121, 365. |
| [4] | (a) Tsuji, J.; Ohno, K. J. Am. Chem. Soc. 1966, 88, 3452. |
| [4] | (b) Tsuji, J.; Ohno, K. Tetrahedron Lett. 1966, 7, 4713. |
| [5] | Blum, J.; Lipshes, Z. J. Org. Chem. 1969, 34, 3076. |
| [6] | Chiusoli, G. P.; Costa, M.; Pecchini, G.; Cometti, G. Transition Met. Chem. 1977, 2, 270. |
| [7] | Gooßen, L. J.; Paetzold, J.; Winkel, L. Synlett 2002, 1721. |
| [8] | Wang, Z.; Wang, X.; Ura, Y.; Nishihara, Y. Org. Lett. 2019, 21, 6779. |
| [9] | Keaveney, S. T.; Schoenebeck, F. Angew. Chem., Int. Ed. 2018, 57, 4073. |
| [10] | (a) Malapit, C. A.; Bour, J. R.; Brigham, C. E.; Sanford, M. S. Nature 2018, 563, 100. |
| [10] | (b) Malapit, C. A.; Bour, J. R.; Laursen, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 17322. |
| [11] | Wang, Z.; Wang, X.; Nishihara, Y. Chem. Commun. 2018, 54, 13969. |
| [12] | (a) He, B.; Liu, X.; Li, H.; Zhang, X.; Ren, Y.; Su, W. Org. Lett. 2021, 23, 4191. |
| [12] | (b) Deng, X.; Guo, J.; Zhang, X.; Wang, X.; Su, W. Angew. Chem., Int. Ed. 2021, 60, 24510. |
| [13] | (a) Blanchard, N.; Bizet, V. Angew. Chem., Int. Ed. 2019, 58, 6814. |
| [13] | (b) Ogiwara, Y.; Sakai, N. Angew. Chem., Int. Ed. 2020, 59, 574. |
| [13] | (c) Karbakhshzadeh, A.; Heravi, M. R. P.; Rahmani, Z.; Ebadi, A. G.; Vessally, E. J. Fluorine Chem. 2021, 248, 109806. |
| [14] | Fu, L.; Cao, X.; Wan, J.; Liu, Y. Chin. J. Chem. 2020, 38, 254. |
| [15] | (a) Zarate, C.; Manzano, R.; Martin, R. J. Am. Chem. Soc. 2015, 137, 6754. |
| [15] | (b) Chatupheeraphat, A.; Liao, H. H.; Srimontree, W.; Guo, L.; Minenkov, Y.; Poater, A.; Cavallo, L.; Rueping, M. J. Am. Chem. Soc. 2018, 140, 3724. |
| [15] | (c) Malapit, C. A.; Borrell, M.; Milbauer, M. W.; Brigham, C. E.; Sanford, M. S. J. Am. Chem. Soc. 2020, 142, 5918. |
| [16] | Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green. Chem. 2020, 38, 254. |
| [17] | Zhou, T.; Xie, P. P.; Ji, C. L.; Hong, X.; Szostak, M. Org. Lett. 2020, 22, 6434. |
| [18] | Aschenaki, A.; Ren, F.; Liu, J.; Zheng, W.; Song, Q.; Jia, W.; Bao, J. J.; Li, Y. RSC Adv. 2021, 11, 33692. |
| [19] | Zim, D.; Gruber, A. S.; Ebeling, G.; Dupont, J.; Monteiro, A. L. Org. Lett. 2000, 2, 2881. |
| [20] | Sicard, L.; Quinton, C.; Peltier, J. D.; Tondelier, D.; Geffroy, B.; Biapo, U.; Metivier, R.; Jeannin, O.; Rault-Berthelot, J.; Poriel, C. Chemistry 2017, 23, 7719. |
| [21] | Bistri, O.; Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 586. |
| [22] | Wójcik, K.; Goux-Henry, C.; Andrioletti, B.; Michał Pietrusiewicz, K.; Framery, E. Tetrahedron Lett. 2012, 53, 5602. |
| [23] | Shen, N.; Li, R.; Liu, C.; Shen, X.; Guan, W.; Shang, R. ACS Catal. 2022, 12, 2788. |
| [24] | Hanley, P. S.; Ober, M. S.; Krasovskiy, A. L.; Whiteker, G. T.; Kruper, W. J. ACS Catal. 2015, 5, 5041. |
| [25] | Nandurkar, N. S.; Bhanushali, M. J.; Bhor, M. D.; Bhanage, B. M. Tetrahedron Lett. 2008, 49, 1045. |
| [26] | Zou, Y.; Yue, G.; Xu, J.; Zhou, J. S. Eur. J. Org. Chem. 2014, 2014, 5901. |
| [27] | Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926. |
| [28] | Santra, S.; Hota, P. K.; Bhattacharyya, R.; Bera, P.; Ghosh, P.; Mandal, S. K. ACS Catal. 2013, 3, 2776. |
| [29] | Liu, C.; Ni, Q.; Bao, F.; Qiu, J. Green Chem. 2011, 13, 1260. |
| [30] | Zhou, Y.; You, W.; Smith, K. B.; Brown, M. K. Angew. Chem., Int. Ed. 2014, 53, 3475. |
| [31] | Moon, Y.; Kwon, D.; Hong, S. Angew. Chem., Int. Ed. 2012, 51, 11333. |
/
| 〈 |
|
〉 |