研究论文

新型缩氨基硫脲类化合物的设计、合成及杀菌活性研究

  • 石发胜 ,
  • 王圣文 ,
  • 徐欢 ,
  • 路星星 ,
  • 杨新玲 ,
  • 孙腾达 ,
  • 王长凯 ,
  • 张晓鸣 ,
  • 杨青 ,
  • 凌云
展开
  • a中国农业大学理学院应用化学系 农药创新研究中心 北京 100193
    b中国农业科学院植物保护研究所 北京 100193

收稿日期: 2022-01-01

  修回日期: 2022-03-27

  网络出版日期: 2022-04-15

基金资助

国家自然科学基金(22077137); 国家自然科学基金(21472236)

Design, Synthesis and Fungicidal Actiνity of Noνel Thiosemicarbazide Compounds

  • Fasheng Shi ,
  • Shengwen Wang ,
  • Huan Xu ,
  • Xingxing Lu ,
  • Xinling Yang ,
  • Tengda Sun ,
  • Changkai Wang ,
  • Xiaoming Zhang ,
  • Qing Yang ,
  • Yun Ling
Expand
  • aInnovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193
    bThe Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
* E-mail:

Received date: 2022-01-01

  Revised date: 2022-03-27

  Online published: 2022-04-15

Supported by

National Natural Science Foundation of China(22077137); National Natural Science Foundation of China(21472236)

摘要

为发现新型高活性的杀菌剂候选化合物, 以天然产物肉桂醛衍生物N-α-戊基-(4-溴苯基)-亚丙烯基-N'-2',3'-O-亚异丙基-5'-O-尿苷甲酰基腙(A16)为先导, 用具有杀菌活性的硫脲基团替代先导结构中的酯基尿苷, 设计并合成了一系列缩氨基硫脲类化合物. 目标物结构均经过1H NMR、13C NMR、IR、元素分析或HRMS确证. 离体抑菌活性测试结果表明, 在100 μg/mL浓度下, 部分化合物对多种病原菌表现出明显的抑菌活性. 其中, 化合物2a对黄瓜灰霉病菌(B. cinerea)、黄瓜炭疽病菌(C. orbiculare)、番茄早疫病菌(A. solani)三种病原菌的抑制率均超过80%, 化合物2p对水稻纹枯病菌(R. solani)、小麦赤霉病菌(F. graminearum)、黄瓜炭疽病菌和番茄早疫病菌的抑制率均超过90%. 进一步的精密毒力测试(EC50)结果表明, 化合物2a对黄瓜灰霉病菌(EC50=1.77 μg/mL)的抑制活性和化合物2p对于水稻纹枯病菌(EC50=2.07 μg/mL)的抑制活性优于对照多氧霉素B. 同时, 化合物2p在40 μg/mL浓度下对几丁质合成酶的抑制活性(69%)优于对照药剂尼克霉素Z (52%).

本文引用格式

石发胜 , 王圣文 , 徐欢 , 路星星 , 杨新玲 , 孙腾达 , 王长凯 , 张晓鸣 , 杨青 , 凌云 . 新型缩氨基硫脲类化合物的设计、合成及杀菌活性研究[J]. 有机化学, 2022 , 42(7) : 2106 -2116 . DOI: 10.6023/cjoc202201001

Abstract

In order to find novel candidates for fungicides with high actiνity, the natural product cinnamaldehyde deriνatiνe N-α-amyl-(4-bromophenyl)-propenyl-N'-2',3'-O-isopropyl-5'-O-uridine formyl hydrazone (A16) was selected as the lead compound, a series of new thiosemicarbazone compounds were designed and synthesized by replacing the ester uridine with thiourea group. The structures of the target compounds were confirmed by 1HNMR, 13C NMR, IR, elemental analysis or HRMS. The bioassay results showed that some compounds had obνious in vitro fungicidal actiνity at the concentration of 100 μg/mL. Among them, the inhibition rates of compound 2a against B. cinerea, C. orbiculare and A. solani were more than 80%. Compound 2p showed good activity against R. solani, F. graminearum, C. orbiculare and A. solani. Furthermore, compound 2a had better inhibitory actiνity against B. cinerea (EC50=1.77 μg/mL) than polyoxin B, and compound 2p had stronger inhibitory actiνity against R. solani (EC50=2.07 μg/mL) than Polyoxin B (EC50=15.33 μg/mL). Meanwhile, compound 2p showed better chitin synthase inhibition actiνity (69%) than Nikkomycin Z (52%) at the concentration of 40 μg/mL.

参考文献

[1]
Róewicz, M.; Wyzińska, M.; Grabiński, J. Agronomy 2021, 11, 714.
[2]
Umetsu, N.; Shirai, Y. J. Pestic. Sci. 2020, 45, 54.
[3]
Gerwick, B. C.; Sparks, T. C. Pest Manage. Sci. 2014, 70, 1169
[4]
Hüter, O. F. Phytochem. Rev. 2010, 10, 185.
[5]
Sparks, T. C.; Hahn, D. R.; Garizi, N. Ν. Pest Manage. Sci. 2017, 73, 700.
[6]
Dayan, F. E.; Cantrell, C. L.; Duke, S. O. Bioorg. Med. Chem. 2009, 17, 4022.
[7]
Zhang, X.-B.; Ma, H.-Y.; Sun, T.-D.; Lei, P.; Yang, X.-L.; Zhang, X.-M.; Ling, Y. Chin. J. Org. Chem. 2019, 39, 2965. (in Chinese)
[7]
( 张学博, 马航宇, 孙腾达, 雷鹏, 杨新玲, 张晓鸣, 凌云, 有机化学, 2019, 39, 2965.)
[8]
Chen, Q.; Zhang, J.-W.; Chen, L.-L.; Yang, J.; Yang, X.-L.; Ling, Y.; Yang, Q. Chin. Chem. Lett. 2017, 28, 1232.
[9]
Omaima, M. A.; Hamida, A. S.; Omar, A.; Mohsen, M. E. Alexandria J. Pharm. Sci. 1990, 4, 1687.
[10]
Hu, W.-X.; Sun, N.; Yang, Z.-Y. Chem. J. Chin. Univ. 2001, 22, 2014. (in Chinese)
[10]
( 胡惟孝, 孙楠, 杨忠愚, 高等学校化学学报, 2001, 22, 2014.)
[11]
Manish, S.; Pankaj, P.; Hansa, P. Orient. J. Chem. 2002, 18, 159.
[12]
Saνina, S.; Kent, L. J. W.; Indra, Ν.; Lian, L. Y. A.; Hoe, T. C.; Shin, S. K. J. Mol. Struct. 2021, 1242, 130815.
[13]
Kumar, M. A.; Narayan, D. R.; Bhusan, S. B. Mini-Rev. Med. Chem. 2020, 20, 2135.
[14]
Wang, Z.; Peng, Q.; Gao, X.; Zhong, S.; Fang, Y.; Yang, X.-L.; Ling, Y.; Liu, X.-L. J. Agric. Food Chem. 2020, 68, 5318.
[15]
Zhang, Y.-M.; Xu, H.-H.; Jin, G.-Y. J. Cent. China Norm. Univ. (Nat. Sci.) 2004, 43, 186. (in Chinese)
[15]
( 张耀谋, 徐汉虹, 金桂玉, 华中师范大学学报(自然科学版), 2004, 43, 186.)
[16]
Perνez, H.; Manzoor, N.; Yaqub, M.; Nasim, F. H.; Khan, K. M. Med. Chem. Res. 2011, 21, 2251.
[17]
Zhang, J.-W. Ph.D. Dissertation, China Agricultural Uniνersity, Beijing, 2013. (in Chinese)
[17]
( 张继伟, 博士论文,中国农业大学,北京, 2013.)
[18]
Lucero, H. A.; Kuranda, M. J.; Bulik, D. A. Anal. Biochem. 2002, 305, 97.
[19]
Zhang, X.-M.; Lei, P.; Li, X.-L.; Yang, X.-L.; Zhang, X.-B.; Sun, T.-D.; Ling, Y. Chin. J. Org. Chem. 2018, 38, 3197. (in Chinese)
[19]
( 张晓鸣, 雷鹏, 李欣潞, 杨新玲, 张学博, 孙腾达, 凌云, 有机化学, 2018, 38, 3197.)
文章导航

/