综述与进展

近年来过渡金属催化吡啶酮/异喹啉酮的C—H活化反应研究进展

  • 龚诚 ,
  • 唐剑 ,
  • 徐飞 ,
  • 李鹏杰 ,
  • 王泽田 ,
  • 张玉敏 ,
  • 余国贤 ,
  • 王亮
展开
  • 江汉大学光电材料与技术学院 光电化学材料与器件教育部重点实验室 武汉 430056

收稿日期: 2022-02-15

  修回日期: 2022-03-29

  网络出版日期: 2022-04-22

基金资助

国家自然科学基金(21302064); 湖北省自然科学基金(2017CFB690)

Recent Advances in Transition-Metal-Catalyzed C—H Activation of Pyridone/Isoquinolones

  • Cheng Gong ,
  • Jian Tang ,
  • Fei Xu ,
  • Pengjie Li ,
  • Zetian Wang ,
  • Yumin Zhang ,
  • Guoxian Yu ,
  • Liang Wang
Expand
  • Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056

Received date: 2022-02-15

  Revised date: 2022-03-29

  Online published: 2022-04-22

Supported by

National Natural Science Foundation of China(21302064); Natural Science Foundation of Hubei Province(2017CFB690)

摘要

吡啶酮或异喹啉-1-酮是一类重要的含氮杂环化合物, 具有良好的生物活性和独特的化学性能, 在合成化学、功能材料和生物医药等领域具有重要研究价值和应用前景. 近年来, 过渡金属催化C—H活化反应为官能化吡啶酮或异喹啉-1-酮的构建提供了一种更为原子经济和步骤经济的合成策略, 受到有机化学家们的广泛关注. 按照金属催化剂的种类进行分类, 综述了近些年过渡金属催化吡啶酮或异喹啉-1-酮衍生物的C—H活化反应的研究进展, 着重探讨了催化体系、反应机理、底物适用性及其相关应用, 并对该领域存在的问题以及发展趋势进行了分析和展望.

本文引用格式

龚诚 , 唐剑 , 徐飞 , 李鹏杰 , 王泽田 , 张玉敏 , 余国贤 , 王亮 . 近年来过渡金属催化吡啶酮/异喹啉酮的C—H活化反应研究进展[J]. 有机化学, 2022 , 42(7) : 1925 -1949 . DOI: 10.6023/cjoc202202017

Abstract

Pyridones/isoquinolones are a kind of important nitrogen-containing heterocyclic compounds, which have good biological activity and unique chemical properties, and play an important role in synthesis chemistry, functional materials, biomedicine and so on. Recently, transition-metal-catalyzed C—H activation has emerged as a more atom- and step-economi- cal strategy for the construction of functionalized pyridones/isoquinolones, and it has attracted the attention of many organic chemists. Herein, the recent advances in transition-metal-catalyzed C—H activation of pyridone/isoquinolone derivatives are summarized according to the types of metal catalysis. An emphasis on the discussion of catalytic system, reaction mechanisms, substrate scopes and synthetic applications is also introduced. Finally, the limitations and development trend of this research field are analyzed and prospected.

参考文献

[1]
(a) Zhang, M. F.; Lv, L. Z.; Li, K. J. Pharm. Pract. 2012, 30, 248. (in Chinese)
[1]
( 张明峰, 吕志良, 李科, 药学实践杂志, 2012, 30, 248.)
[1]
(b) Jessen, H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27, 1168.
[1]
(c) Mu, B.-S.; Zhang, Z.-H.; Wu, W.-B.; Yu, J.-S.; Zhou, J. Acta Chim. Sinica 2021, 79, 685. (in Chinese)
[1]
( 穆博帅, 张志豪, 武文彪, 余金生, 周剑, 化学学报, 2021, 79, 685.)
[2]
Zhang, Y.; Pike, A. Bioorg. Med. Chem. Lett. 2021, 38, 127849.
[3]
Hibi, S.; Ueno, K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine, Y.; Takenaka, O.; Hanada, T.; Yonaga, M. J. Med. Chem. 2012, 55, 10584.
[4]
(a) Pettit, G. R.; Ducki, S.; Eastham, S. A.; Melody, N. J. Nat. Prod. 2009, 72, 1279.
[4]
(b) Goodfellow, E.; Senhaji Mouhri, Z.; Williams, C.; Jean-Claude, B. J. Bioorg. Med. Chem. Lett. 2017, 27, 688.
[5]
Kaila, N.; Follows, B.; Leung, L.; Thomason, J.; Huang, A.; Moretto, A.; Janz, K.; Lowe, M.; Mansour, T. S.; Hubeau, C.; Page, K.; Morgan, P.; Fish, S.; Xu, X.; Williams, C.; Saiah, E. J. Med. Chem. 2014, 57, 1299.
[6]
(a) Dalton, T.; Faber, T.; Glorius, F. ACS Cent. Sci. 2021, 7, 245.
[6]
(b) Shabani, S.; Wu, Y.; Ryan, H. G.; Hutton, C. A. Chem. Soc. Rev. 2021, 50, 9278.
[6]
(c) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B.-F. Chem. Rev. 2021, 121, 14957.
[6]
(d) Zhou, C.-N.; Zheng, Z.-A.; Chang, G.; Xiao, Y.-C.; Shen, Y.-H.; Li, G.; Zhang, Y.-M.; Peng, W.-M.; Wang, L.; Xiao, B. Curr. Org. Chem. 2019, 23, 103.
[6]
(e) Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica 2020, 78, 289. (in Chinese)
[6]
( 廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78, 289.)
[6]
(f) Li, C.-J. Chin. J. Chem. 2022, 40, 838.
[6]
(g) Wang, Z.-T.; Zheng, Z.-A.; Li, P.-J.; Zhou, C.-N.; Cai, S.-J.; Xiao, B.; Wang, L. Chin. J. Chem. 2021, 39, 2823.
[7]
(a) Biswas, A.; Maity, S.; Pan, S.; Samanta, R. Chem.-Asian J. 2020, 15, 2092.
[7]
(b) Hirano, K.; Miura, M. Chem. Sci. 2018, 9, 22.
[8]
(a) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.
[8]
(b) Liu, W.; Ackermann, L. ACS Catal. 2016, 6, 3743.
[8]
(c) Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816.
[8]
(d) Aneeja, T.; Neetha, M.; Afsina, C. M. A.; Anilkumar, G. Catal. Sci. Technol. 2021, 11, 444.
[8]
(e) Son, J. Beilstein J. Org. Chem. 2021, 17, 1733.
[9]
Ni, J.; Zhao, H.; Zhang, A. Org. Lett. 2017, 19, 3159.
[10]
Wang, H.; Pesciaioli, F.; Oliveira, J. C. A.; Warratz, S.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 15063.
[11]
Chen, S. Y.; Han, X. L.; Wu, J. Q.; Li, Q.; Chen, Y.; Wang, H. Angew. Chem., Int. Ed. 2017, 56, 9939.
[12]
Kumar, A.; Muniraj, N.; Prabhu, K. R. Adv. Synth. Catal. 2019, 361, 4933.
[13]
Zheng, G.; Sun, J.; Xu, Y.; Zhai, S.; Li, X. Angew. Chem., Int. Ed. 2019, 58, 5090.
[14]
Zhu, C.; Kuniyil, R.; Ackermann, L. Angew. Chem., Int. Ed. 2019, 58, 5338.
[15]
Wan, S.; Luo, Z.; Xu, X.; Yu, H.; Li, J.; Pan, Y.; Zhang, X.; Xu, L.; Cao, R. Adv. Synth. Catal. 2021, 363, 2586.
[16]
Mohanty, S. R.; Prusty, N.; Banjare, S. K.; Nanda, T.; Ravikumar, P. C. Org. Lett. 2022, 24, 848.
[17]
Kong, L.; Yu,15, S.; Tang, G.; Wang, H.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 3802.
[18]
Boerth, J. A.; Hummel, J. R.; Ellman, J. A. Angew. Chem., Int. Ed. 2016, 55, 12650.
[19]
Gao, F.; Han, X.; Li, C.; Liu, L.; Congae, Z.; Liu, H. RSC Adv. 2018, 8, 32659.
[20]
Zhu, C.; Kuniyil, R.; Jei, B. B.; Ackermann, L. ACS Catal. 2020, 10, 4444.
[21]
Wang, C. S.; Monaco, S. D.; Thai, A. N.; Rahman, M. S.; Pang, B. P.; Wang, C.; Yoshikai, N. J. Am. Chem. Soc. 2020, 142, 12878.
[22]
Mohanty, S. R.; Prusty, N.; Gupta, L.; Biswal, P.; Ravikumar, P. C. J. Org. Chem. 2021, 86, 9444.
[23]
(a) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 15996.
[23]
(b) Tamura, R.; Yamada, Y.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2012, 51, 5679.
[24]
Donets, P. A.; Cramer, N. Angew. Chem., Int. Ed. 2015, 54, 633.
[25]
Diesel, J.; Finogenova, A. M.; Cramer, N. J. Am. Chem. Soc. 2018, 140, 4489.
[26]
Miura, W.; Hirano, K.; Miura, M. J. Org. Chem. 2017, 82, 5337.
[27]
Shen, D.; Zhang, W. B.; Li, Z.; Shi, S. L.; Xu, Y. Adv. Synth. Catal. 2020, 362, 1125.
[28]
Yin, G.; Li, Y.; Wang, R. H.; Li, J. F.; Xu, X. T.; Luan, Y. X.; Ye, M. Acs. Catal. 2021, 11, 4606.
[29]
Peng, P.; Wang, J.; Li, C.; Zhu, W.; Jiang, H.; Liu, H. Rsc. Adv. 2016, 6, 57441.
[30]
Kumar, K. A.; Kannaboina, P.; Das, P. Org. Biomol. Chem. 2017, 15, 5457.
[31]
Zhang, L.; Zheng, X.; Chen, J.; Cheng, K.; Jin, L.; Jiang, X.; Yu, C. Org. Chem. Front. 2018, 5, 2969.
[32]
Fu, Y.; Wang, Z.; Zhang, Q.; Li, Z.; Liu, H.; Bi, X.; Wang, J. RSC Adv. 2020, 10, 6351.
[33]
Das, D.; Biswas, A.; Karmakar, U.; Chand, S.; Samanta, R. J. Org. Chem. 2016, 81, 842.
[34]
Peng, P.; Wang, J.; Jiang, H.; Liu, H. Org. Lett. 2016, 18, 5376.
[35]
Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; Aϊssa, C. Angew. Chem., Int. Ed. 2017, 56, 13117.
[36]
Xia, J.; Kong, L.; Zhou, X.; Zheng, G.; Li, X. Org. Lett. 2017, 19, 5972.
[37]
Hazra, S.; Hirano, K.; Miura, M. Asian J. Org. Chem. 2019, 8, 1097.
[38]
Zhao, H.; Xu, X.; Yu, H.; Li, B.; Xu, X.; Li, H.; Xu, L.; Fan, Q.; Walsh, P. J. Org. Lett. 2020, 22, 4228.
[39]
Tian, M.; Liu, B.; Sun, J.; Li, X. Org. Lett. 2018, 20, 4946.
[40]
Zhao, H.; Xu, X.; Luo, Z.; Cao, L.; Li, B.; Li, H.; Xu, L.; Fan, Q.; Walsh, P. J. Chem. Sci. 2019, 10, 10089.
[41]
Zhu, Y. Q.; Niu, Y. X.; Hui, L. W.; He, J. L.; Zhu, K. Adv. Synth. Catal. 2019, 361, 2897.
[42]
Yao, J.; Kong, L.; Li, X. Chem. Commun. 2020, 56, 13169.
[43]
Xu, X.; Luo, C.; Zhao, H.; Pan, Y.; Zhang, X.; Li, J.; Xu, L.; Lei, M.; Walsh, P. J. Chem.-Eur. J. 2021, 27, 8811.
[44]
Das, D.; Poddar, P.; Maity, S.; Samanta, R. J. Org. Chem. 2017, 82, 3612.
[45]
Grenet, E.; Das, A.; Caramenti, P.; Waser, J. Beilstein J. Org. Chem. 2018, 14, 1208.
[46]
Huang, G.; Shan, Y.; Yu, J. T.; Pan, C. Chem.-Eur. J. 2021, 27, 12294.
[47]
Yu, S.; Li, Y.; Zhou, X.; Wang, H.; Kong, L.; Li, X. Org. Lett. 2016, 18, 2812.
[48]
Li, T.; Wang, Z.; Xu, K.; Liu, W.; Zhang, X.; Mao, W.; Guo, Y.; Ge, X.; Pan, F. Org. Lett. 2016, 18, 1064.
[49]
Biswas, A.; Giri, D.; Das, D.; De, A.; Patra, S. K.; Samanta, R. J. Org. Chem. 2017, 82, 10989.
[50]
Li, J.; Yang, Y.; Wang, Z.; Feng, B.; You, J. Org. Lett. 2017, 19, 3083.
[51]
Zhou, X.; Pan, Y.; Li, X. Angew. Chem., Int. Ed. 2017, 56, 8163.
[52]
Zhou, C. J.; Gao, H.; Huang, S. L.; Zhang, S. S.; Wu, J. Q.; Li, B.; Jiang, X.; Wang, H. ACS Catal. 2019, 9, 556.
[53]
Li, Y.; Xie, F.; Li, X. J. Org. Chem. 2016, 81, 715.
[54]
Miura, W.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 3742.
[55]
Min, M.; Kang, D.; Jung, S.; Hong, S. Adv. Synth. Catal. 2016, 358, 1296.
[56]
Cui, Y.; Bai, D.; Liu, B.; Chang, J.; Li, X. Chem. Commun. 2020, 56, 15631.
[57]
Hazra, S.; Hirano, K.; Miura, M. Heterocycles 2020, 101, 223.
[58]
Itahara, T.; Ouseto, F. Synthesis 1984, 16, 488.
[59]
(a) Cheng, D.; Gallagher, T. Org. Lett. 2009, 11, 2639.
[59]
(b) Chen, Y.; Wang, F.; Jia, A.; Li, X. Chem. Sci. 2012, 3, 3231.
[59]
(c) Anagnostaki, E. E.; Fotiadou, A. D.; Demertzidou, V.; Zografos, A. L. Chem. Commun. 2014, 50, 6879.
[59]
(d) Lah, H. U.; Rasool, F.; Yousuf, S. K. RSC Adv. 2015, 5, 78958.
[60]
Maity, S.; Das, D.; Sarkar, S.; Samanta, R. Org. Lett. 2018, 20, 5167.
[61]
Katsina, T.; Papoulidou, K. E.; Zografos, A. L. Org. Lett. 2019, 21, 8110.
[62]
Miura, W.; Hirano, K.; Miura, M. Synthesis 2017, 49, 4745.
[63]
Dasa, D.; Samanta, R. Adv. Synth. Catal. 2018, 360, 379.
文章导航

/