综述与进展

含氮异靛蓝衍生物的合成及其在光电材料中的应用

  • 罗力铖 ,
  • 李亮 ,
  • 穆有炳 ,
  • 李博文 ,
  • 万晓波
展开
  • a武汉工程大学材料与工程学院 武汉 430074
    b江汉大学光电材料与技术学院 光电化学材料与器件教育部重点实验室 武汉 430056

收稿日期: 2022-02-25

  修回日期: 2022-04-07

  网络出版日期: 2022-04-22

基金资助

国家自然科学基金(22075105); 国家自然科学基金(22102086); 江汉大学启动基金资助项目

Synthesis of Nitrogen-Containing Isoindigo Derivatives and Their Applications in Optoelectronic Materials

  • Licheng Luo ,
  • Liang Li ,
  • Youbing Mu ,
  • Bowen Li ,
  • Xiaobo Wan
Expand
  • aSchool of Materials and Engineering, Wuhan Institute of Technology, Wuhan 430074
    bKey Laboratory of Photoelectrochemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056

Received date: 2022-02-25

  Revised date: 2022-04-07

  Online published: 2022-04-22

Supported by

National Natural Science Foundation of China(22075105); National Natural Science Foundation of China(22102086); Start-up Funding from Jianghan University

摘要

异靛蓝因其良好的平面性以及较强的拉电子能力, 一直作为优秀的受体材料在有机光电材料中扮演着重要的角色, 对异靛蓝的结构改造也成为了学术界关注的重点. 其中, 含氮异靛蓝衍生物的合成及其在光电材料中的应用取得了较大的进展, 氮原子的引入可进一步调节异靛蓝衍生物推拉电子的能力以及平面性, 从而调节其光电性能. 本综述总结了近年来含氮的芳杂环异靛蓝衍生物的发展过程以及在光电材料中的应用, 以期为功能化共轭分子的设计提供有益的借鉴和指导.

本文引用格式

罗力铖 , 李亮 , 穆有炳 , 李博文 , 万晓波 . 含氮异靛蓝衍生物的合成及其在光电材料中的应用[J]. 有机化学, 2022 , 42(7) : 1960 -1973 . DOI: 10.6023/cjoc202202031

Abstract

Isoindigo has played an important role in organic optoelectronic materials as an excellent acceptor building block due to its planarity and electron-withdrawing capability. The modification, of isoindigo has also become the focus of academia. Recently, great achievements have been made in the synthesis of nitrogen-containing isoindigo derivatives and their applications as optoelectronic materials. The incorporation of nitrogen atom can further adjust the electron push/pull ability and the planarity of isoindigo derivatives, thereby tune their optoelectronic properties. The development of nitrogen-containing isoindigo derivatives, as well as their applications in optoelectronic materials, which we hope would provide useful information for the design of conjugated optoelectronic materials, is summarized.

参考文献

[1]
Mei, J.; Graham, K. R.; Stalder, R.; Reynolds, J. R. Org. Lett. 2010, 12, 660.
[2]
Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Sciene 1992, 258, 1474.
[3]
Wang, E.; Ma, Z.; Zhang, Z.; Henriksson, P.; Inganäs, O.; Zhang, F.; Andersson, M. R. Chem. Commun. 2011, 47, 4908.
[4]
Lei, T.; Dou, J. H.; Pei, J. Adv. Mater. 2012, 24, 6457.
[5]
Wang, E.; Mammo, W.; Andersson, M. R. Adv. Mater. 2014, 26, 1801.
[6]
Lei, T.; Cao, Y.; Fan, Y.; Liu, C. J.; Yuan, S. C.; Pei, J. J. Am. Chem. Soc. 2011, 133, 6099.
[7]
Heeger, A. J. Chem. Soc. Rev. 2010, 39, 2354.
[8]
Yuen, J. D.; Wudl, F. Energy Environ. Sci. 2013, 6, 392.
[9]
Tsumura, A.; Koezuka, H.; Ando, T. J. A. P. L. Appl. Phys. Lett. 1986, 49, 1210.
[10]
Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[11]
Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[12]
Wei, X.; Zhang, W.; Yu, G. Adv. Funct. Mater. 2021, 31, 2010979.
[13]
Lu, Y.; Ding, Y.; Wang, J.; Pei, J. Chin. J. Org. Chem. 2016, 36, 2272. (in Chinese)
[13]
( 卢阳, 丁一凡, 王婕妤, 裴坚, 有机化学, 2016, 36, 2272.)
[14]
Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.
[15]
Kritsanida, M.; Magiatis, P.; Skaltsounis, A. L.; Peng, Y.; Li, P.; Wennogle, L. P. J. Nat. Prod. 2009, 72, 2199.
[16]
de Miguel, G.; Camacho, L.; García-Frutos, E. M. J. Mater. Chem. C. 2016, 4, 1208.
[17]
Marfat, A.; Carta, M. P. Tetrahedron Lett. 1987, 28, 4027.
[18]
Sriram, R.; Sesha Sai Pavan Kumar, C. N.; Raghunandan, N.; Ramesh, V.; Sarangapani, M.; Rao, V. J. Synth. Commun. 2012, 42, 3419.
[19]
Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Chem. Mater. 2016, 28, 2209.
[20]
Lu, Y.; Liu, Y.; Dai, Y. Z.; Yang, C. Y.; Un, H. I.; Liu, S. W.; Pei, J. Chem.-Asian J. 2017, 12, 302.
[21]
Randell, N. M.; Douglas, A. F.; Kelly, T. L. J. Mater. Chem. A 2014, 2, 1085.
[22]
Randell, N. M.; Fransishyn, K. M.; Kelly, T. L. ACS Appl. Mater. Interfaces 2017, 9, 24788.
[23]
Ashizawa, M.; Hasegawa, T.; Kawauchi, S.; Masunaga, H.; Hikima, T.; Sato, H.; Matsumoto, H. RSC Adv. 2016, 6, 109434.
[24]
Garzón, A.; Navarro, A.; López, D.; Perles, J.; García-Frutos, E. M. J. Phys. Chem. C 2017, 121, 27071.
[25]
Yue, W.; Nikolka, M.; Xiao, M.; Sadhanala, A.; Nielsen, C. B.; White, A. J.; McCulloch, I. J. Mater. Chem. 2016, 4, 9704.
[26]
Parr, Z. S.; Borges-González, J.; Rashid, R. B.; Thorley, K. J.; Meli, D.; Paulsen, B. D.; Nielsen, C. B. Adv. Mater. 2107829.
[27]
Paulsen, B. D.; Tybrandt, K.; Stavrinidou, E.; Rivnay, J. Nat. Mater. 2020, 19, 13
[28]
Yue, W.; Li, C.; Tian, X.; Li, W.; Neophytou, M.; Chen, H.; McCulloch, I. J. Polym. Sci., art A: Polym. Chem. 2017, 55, 2691.
[29]
Huang, J.; Chen, Z.; Mao, Z.; Gao, D.; Wei, C.; Lin, Z.; Yu, G. Adv. Electron. Mater. 2017, 3, 1700078.
[30]
Zhou, Y.; Wang, Q.; Zhang, W.; Li, Y.; Huang, J.; Wei, C.; Yu, G. Dyes Pigm. 2020, 180, 108438.
[31]
Wei, C.; Zhang, W.; Huang, J.; Li, H.; Zhou, Y.; Yu, G. Macromolecules 2019, 52, 2911.
[32]
Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2013, 135, 12168.
[33]
Shi, K.; Zhang, F.; Di, C. A.; Yan, T. W.; Zou, Y.; Zhou, X.; Pei, J. J. Am. Chem. Soc. 2015, 137, 6979.
[34]
Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. Adv. Mater. 2013, 25, 6589.
[35]
Dai, Y. Z.; Ai, N.; Lu, Y.; Zheng, Y. Q.; Dou, J. H.; Shi, K.; Pei, J. Chem. Sci. 2016, 7, 5753.
[36]
Zhang, G.; Dai, Y.; Song, K.; Lee, H.; Ge, F.; Qiu, L.; Cho, K. Polym. Chem. 2017, 8, 2381.
[37]
Shi, K.; Zhang, W.; Gao, D.; Zhang, S.; Lin, Z.; Zou, Y.; Yu, G. Adv. Mater. 2018, 30, 1705286.
[38]
Chen, Z.; Huang, J.; Zhang, W.; Zhou, Y.; Wei, X.; Wei, J.; Yu, G. J. Mater. Chem. C 2022, 10, 2671.
[39]
Chen, F.; Jiang, Y.; Sui, Y.; Zhang, J.; Tian, H.; Han, Y.; Geng, Y. Macromolecules 2018, 51, 8652.
[40]
Liu, H.; Zhang, X.; Cheng, J.; Ye, D.; Chen, L.; Wen, H.; Liu, S. Chin. J. Org. Chem. 2020, 40, 831. (in Chinese)
[40]
( 刘慧, 张小凤, 程敬招, 叶东鼐, 陈龙, 温和瑞, 刘诗咏, 有机化学, 2020, 40, 831.)
[41]
Huang, K.; Zhao, X.; Du, Y.; Kim, S.; Wang, X.; Lu, H.; Qiu, L. J. Mater. Chem. C 2019, 7, 7618.
[42]
Randell, N. M.; Radford, C. L.; Yang, J.; Quinn, J.; Hou, D.; Li, Y.; Kelly, T. L. Chem. Mater. 2018, 30, 4864
[43]
Nishi, H.; Kitahara, K.; Tokita, S. Nippon Kagaku Kaishi 1977, 146.
[44]
Wang, X.; Zhao, Z.; Ai, N.; Pei, J.; Liu, Y.; Wan, X. Eur. J. Org. Chem. 2016, 15, 2603.
[45]
Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Adv. Mater. 2012, 24, 3087.
[46]
Li, C.; Zhang, H.; Mirie, S.; Peng, J.; Cai, M.; Wang, X.; Wan, X. Org. Chem. Front. 2018, 5, 442.
[47]
Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.
[48]
Cao, Y.; Yuan, J.-S.; Zhou, X.; Wang, X.-Y.; Zhuang, F.-D.; Wang, J.-Y.; Pei, J. Chem. Commun. 2015, 51, 10514.
[49]
Li, C.; Un, H. I.; Peng, J.; Cai, M.; Wang, X.; Wang, J.; Wan, X. Chem.-Eur. J. 2018, 24, 9698.
[50]
Li, C. C.; Xiong, M.; Peng, J. W.; Wang, J. Y.; Zhang, H. R.; Mu, Y. B.; Wan, X. B. Chin. J. Polym. Sci. 2021, 39, 838.
文章导航

/