研究论文

可见光诱导α-重氮酯的脱氮氧合反应构建α-氧代酰亚胺酯

  • 刘瑞生 ,
  • 付双敏 ,
  • 楚秀民 ,
  • 张灵莉 ,
  • 丁柔 ,
  • 赵先恩 ,
  • 岳会兰 ,
  • 魏伟
展开
  • a 曲阜师范大学化学与化工学院 山东曲阜 273165
    b 中国科学院藏药研究重点实验室 中国科学院西北高原生物研究所 青海西宁 810008
共同第一作者

收稿日期: 2022-04-06

  修回日期: 2022-05-02

  网络出版日期: 2022-05-18

基金资助

国家级大学生创新创业训练项目(S202110446110); 山东省高校青创科技计划(2019KJC021); 山东省自然科学基金(ZR2021MB065); 国家自然科学基金(22176109); 国家自然科学基金(31900298); 青海省创新平台建设专项(2022-ZJ-Y03)

Visible-Light-Induced Denitrification Oxygenation Reaction of α-Diazoesters to Construct α-Oxyimido Esters

  • Ruisheng Liu ,
  • Shuangmin Fu ,
  • Xiumin Chu ,
  • Lingli Zhang ,
  • Rou Ding ,
  • Xian'en Zhao ,
  • Huilan Yue ,
  • Wei Wei
Expand
  • a School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165
    b CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008
These authors contributed equally to this work.

Received date: 2022-04-06

  Revised date: 2022-05-02

  Online published: 2022-05-18

Supported by

National Training Programs of Innovation and Entrepreneurship for Undergraduates(S202110446110); Youth Innovation and Technology Project of High School in Shandong Province(2019KJC021); Natural Science Foundation of Shandong Province(ZR2021MB065); National Natural Science Foundation of China(22176109); National Natural Science Foundation of China(31900298); Innovation Platform Construction Project of Qinghai Province(2022-ZJ-Y03)

摘要

报道了一种可见光诱导下α-重氮酯与N-羟基邻苯二甲酰亚胺(NHI)的脱氮氧合反应构建α-氧代酰亚胺酯化合物的方法. 该反应采用3W蓝色LEDs灯为可见光源, 无需任何光催化剂, 室温下在1,4-二氧六环溶剂中可以有效合成一系列α-氧代酰亚胺酯化合物. 有趣的是, 当四氢呋喃作为溶剂时, 四氢呋喃参与的三组分开环产物可以获得中等至良好的收率. 该反应放大到克级规模仍保持良好的反应效率, 表明该方法具有合成α-氧代酰亚胺酯的实际应用潜力.

本文引用格式

刘瑞生 , 付双敏 , 楚秀民 , 张灵莉 , 丁柔 , 赵先恩 , 岳会兰 , 魏伟 . 可见光诱导α-重氮酯的脱氮氧合反应构建α-氧代酰亚胺酯[J]. 有机化学, 2022 , 42(8) : 2462 -2470 . DOI: 10.6023/cjoc202204014

Abstract

Visible-light-induced denitrification oxygenation reaction of α-diazoesters with N-hydroxyimides to access α-oxyimido esters has been developed. This reaction provides an efficient approach to synthesize a series of N-hydroxyimides at room temperature in 1,4-dioxane under irradiation of 3W blue LED lamps without any photocatalyst. Interestingly, when tetrahydrofuran (THF) was used as the solvent, structurally diverse α-oxyimido esters could be rapidly and efficiently obtained through a three-component coupling reaction of α-diazoesters, THF, and N-hydroxyimides. The reaction could conduct on a gram scale without a significant loss of reaction efficiency, indicating that this method could serve as a practical protocol to synthesize α-oxyimido esters.

参考文献

[1]
Diedrich, D.; Moita, A. J. R.; Rether, A.; Frieg, B.; Reiss, G. J.; Hoeppner, A.; Kurz, T.; Gohlke, H.; Ledeke, S.; Kassack, M. U.; Hansen, F. K. Chem.-Eur. J. 2016, 22, 17600.
[2]
Takekida, Y.; Okazaki, M.; Shuto, Y. Biosci. Biotechnol. Biochem. 1999, 63, 1831.
[3]
Brown, M. F.; Mitton-Fry, M. J.; Arcari, J.; Barham, T.; Casavant, J. B.; Gerstenberger, S. S.; Han, J. J. Med. Chem. 2013, 56, 5541.
[4]
Yamawaki, K.; Nomura, T.; Yasukata, T.; Uotani, K.; Miwa, H.; Takeda, K.; Nishitani, Y. Bioorg. Med. Chem. 2007, 15, 6716.
[5]
Hara, R.; Nakai, E.-I.; Hisamichi, H.; Nagano, N. J. Antibiot. 1994, 47, 477.
[6]
Bompart, J.; Giral, L.; Malicorne, G.; Puygrenier, M. Eur. J. Med. Chem. 1988, 23, 457.
[7]
Szabo, G.; Fischer, J.; Kis-Varga, A.; Gyires, K. J. Med. Chem. 2008, 51, 142.
[8]
Edafiogho, I. O.; Scott, K. R.; Moore, J. A.; Farrar, V. A.; Nicholson, J. M. J. Med. Chem. 1991, 34, 387.
[9]
Dian, L.; Wang, S.; Zhang-Negrerie, D.; Du, Y. Adv. Synth. Catal. 2015, 357, 3836.
[10]
Krylov, I. B.; Lopat’eva, E. R.; Budnikov, A. S.; Nikishin, G. I.; Terent’ev, A. O. J. Org. Chem. 2020, 85, 1935.
[11]
Xu, L.; Yi, Y.; Hu, S.; Ye, J.; Hu, A. Electrochim. Acta 2022, 403, 139533.
[12]
Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506.
[13]
Ciszewski, L. W.; Rybicka-jasinska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
[14]
Li, Q.; Li, M.; Shi, S.; Ji, S.; He, C.; Jiang, B.; Hao, W. Chin. J. Org. Chem. 2020, 40, 384. (in Chinese)
[14]
(李庆雪, 李梦伟, 时绍青, 季晓霜, 何春兰, 姜波, 郝文娟, 有机化学, 2020, 40, 384.)
[15]
(a) Yang, Z.; Stivanin, M. L.; Jurberg, I. D.; Koenigs, R. M. Chem. Soc. Rev. 2020, 49, 6833.
[15]
(b) Sambasivanand, R.; Ball, Z. T. Angew. Chem., Int. Ed. 2012, 51, 8568.
[15]
(c) Adly, F. G.; Gardiner, M. G.; Ghanem, A. Chem.-Eur. J. 2016, 22, 3447.
[15]
(d) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 19198.
[15]
(e) Xu, H.; Li, Y.-P.; Cai, Y.; Wang, G.-P.; Zhu, S. F.; Zhou, Q.-L. J. Am. Chem. Soc. 2017, 139, 7697.
[16]
(a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223.
[16]
(b) Yakura, T.; Ozono, A.; Matsui, K.; Yamashita, M.; Fujiwara, T. Synlett 2013, 24, 65.
[16]
(c) Roberts, E.; Sançon, J. P.; Sweeney, J. B. Org. Lett. 2005, 7, 2075.
[17]
(a) Clapham, B.; Spanka, C.; Janda, K. D. Org. Lett. 2001, 3, 2173.
[17]
(b) Tan, F.; Liu, X.; Hao, X.; Tang, Y.; Lin, L.; Feng, X. ACS Catal. 2016, 6, 6930.
[17]
(c) Zhang, Y.; Yao, Y.; He, L.; Liu, Y.; Shi, L. Adv. Synth. Catal. 2017, 359, 2754.
[18]
(a) Neupane, P.; Li, X.; Jung, J. H.; Lee, Y. R.; Kim, S. H. Tetrahedron 2012, 68, 2496.
[18]
(b) Dyer, J.; Jockusch, S.; Balsanek, V.; Sames, D.; Turro, N. J. Org. Chem. 2005, 70, 2143.
[18]
(c) Dussault, P. H.; Xu, C. Tetrahedron Lett. 2004, 45, 7455.
[19]
(a) Wang, N.-N.; Huang, L.-R.; Hao, W.-J.; Zhang, T.-S.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2016, 18, 1298.
[19]
(b) Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890.
[19]
(c) Qian, L.; Cai, B.-G.; Li, L.; Xuan, J. Org. Lett. 2021, 23, 6951.
[19]
(d) Cai, B.-G.; Li, Q.; Zhang, Q.; Li, L.; Xuan, J. Org. Chem. Front. 2021, 8, 598.
[19]
(e) Zhang, T.-S.; Zhang, H.; Fu, R.; Wang, J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Chem. Commun. 2019, 55, 13231.
[20]
Liu, R.; Liu, Q.; Meng, H.; Ding, H.; Hao, J.; Ji, Z.; Yue, H.; Wei, W. Org. Chem. Front. 2021, 8, 1970.
[21]
Yang, J.; Duan, J.; Wang, G.; Zhou, H.; Ma, B.; Wu, C.; Xiao, J. Org. Lett. 2020, 22, 7284.
文章导航

/