研究论文

钯催化的不对称碳氢键烯基化动力学拆分2-(芳基亚磺酰基)吡啶

  • 范铃洁 ,
  • 周涛 ,
  • 杨旭 ,
  • 江梦雪 ,
  • 胡信全 ,
  • 史炳锋
展开
  • a 浙江工业大学化学工程学院 杭州 310032
    b 浙江大学化学系前瞻技术研究中心 杭州 310027
    c 五邑大学生物科技与大健康学院 广东江门 529020
†共同第一作者.

收稿日期: 2022-04-24

  修回日期: 2022-05-08

  网络出版日期: 2022-05-18

基金资助

国家自然科学金(21925109); 国家自然科学金(21801223); 浙江省自然科学基金(LD22B030003); 河南师范大学化学化工学院开放基金; 浙江大学化学前瞻技术研究中心资助项目

Pd(II)-Catalyzed Enantioselective C—H Olefination of 2-(Arylsulfinyl)pyridines through Kinetic Resolution

  • Lingjie Fan ,
  • Tao Zhou ,
  • Xu Yang ,
  • Mengxue Jiang ,
  • Xinquan Hu ,
  • Bingfeng Shi
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032
    b Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027
    c School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020
†These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2022-04-24

  Revised date: 2022-05-08

  Online published: 2022-05-18

Supported by

National Natural Science Foundation of China(21925109); National Natural Science Foundation of China(21801223); Zhejiang Provincial Natural Science Foundation of China(LD22B030003); Open Research Fund of School of Chemistry and Chemical Engineering of Henan Normal University; Center of Chemistry for Frontier Technologies of Zhejiang University

摘要

通过发展钯催化的不对称碳氢键烯基化, 实现了2-(芳基亚磺酰基)吡啶的动力学拆分. 利用该方法, 在温和条件下用廉价商业化的L-焦谷氨酸作为手性配体, 以较高到优异的产率和对映选择性实现了一系列手性亚砜的合成, 对映选择性高达99%, 拆分因子s大于200. 该方法对于天然产物衍生的丙烯酸酯以及克级制备反应都有很好的兼容性.

本文引用格式

范铃洁 , 周涛 , 杨旭 , 江梦雪 , 胡信全 , 史炳锋 . 钯催化的不对称碳氢键烯基化动力学拆分2-(芳基亚磺酰基)吡啶[J]. 有机化学, 2022 , 42(10) : 3405 -3418 . DOI: 10.6023/cjoc202204058

Abstract

A Pd(II)-catalyzed enantioselective C—H olefination of 2-(arylsulfinyl)pyridines through kinetic resolution is developed. A wide range of chiral sulfoxides were prepared in good to high yields and selectivity (up to 99% ee, s-factor of up to 200) under mild conditions using cheap and commercially available L-pGlu-OH as chiral ligand. This protocol is easy to scale-up and compatible with various acrylates bearing core structures of natural products.

参考文献

[1]
(a) Lindberg, P.; Braendstroem, A.; Wallmark, B.; Mattsson, H.; Rikner, L.; Hoffmann, K. J. Med. Res. Rev. 1990, 10, 1.
[1]
(b) Bentley, R. Chem. Soc. Rev. 2005, 34, 609.
[1]
(c) Legros, J.; Dehli, J. R.; Bolm, C. Adv. Synth. Catal. 2005, 347, 19.
[2]
For select reviews, see: (a) Carreno, M. C.; Hernández-Torres, G.; Ribagorda, M.; Urbano, A. Chem. Commun. 2009, 6129.
[2]
(b) Sipos, G.; Drinkel, E. E.; Dorta, R. Chem. Soc. Rev. 2015, 44, 3834.
[2]
(c) Trost, B. M.; Rao, M. Angew. Chem., Int. Ed. 2015, 54, 5026.
[2]
(d) Otocka, S.; Kwiatkowska, M.; Madalińska, L.; Kielbasiński, P. Chem. Rev. 2017, 117, 4147.
[2]
(e) Jia, T.; Wang, M.; Liao, J. Top. Curr. Chem. 2019, 377, 1.
[3]
(a) Fernandez, I.; Khiar, N. Chem. Rev. 2003, 103, 3651.
[3]
(b) Wojaczyn?ska, E.; Wojaczyn?ski, J. Chem. Rev. 2010, 110, 4303.
[3]
(c) Wojaczyn?ska, E.; Wojaczyn?ski, J. Chem. Rev. 2020, 120, 4578.
[3]
(d) Zhu, H.; Wang, C.; Zong. L. Chin. J. Org. Chem. 2021, 41, 3431. (in Chinese).
[3]
(朱海梦, 王超, 宗利利, 有机化学, 2021, 41, 3431.)
[4]
(a) Maitro, G.; Vogel, S.; Sadaoui, M.; Prestat, G.; Madec, D.; Poli, G. Org. Lett. 2007, 9, 5493.
[4]
(b) Jia, T.; Zhang, M.; McCollom, S. P.; Bellomo, A.; Montel, S.; Mao, J.; Drecher, S. D.; Welch, C. J.; Regalado, E. L.; Williamson, R. T.; Manor, B. C.; Tomson, N. C.; Walsh, P. J. J. Am. Chem. Soc. 2017, 139,8337.
[5]
For select reviews, see: (a) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.
[5]
(b) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.
[5]
(c) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, eaao4798.
[5]
(d) Loup, J.; Dhawa, U.; Pesciaioli, F.; Wencel-Delord, J.; Ackermann, L. Angew. Chem., Int. Ed. 2019, 58, 12803.
[5]
(e) Liao, G.; Zhang, T.; Lin, Z.-K.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 19773.
[5]
(f) Achar, T. K.; Maiti, S.; Jana, S.; Maiti, D. ACS Catal. 2020, 10, 13748.
[5]
(g) Zhang, Q.; Shi, B.-F. Acc. Chem. Res. 2021, 54, 2750.
[5]
(h) Yoshino, T.; Matsunaga, S. ACS Catal. 2021, 11, 6455.
[5]
(i) Wang, P.-S.; Gong, L.-Z. Synthesis 2021, 53, DOI: 10.1055/a-1662-7096.
[5]
(j) Yu, X.; Zhang, Z.-Z.; Niu, J.-L.; Shi, B.-F. Org. Chem. Front. 2022, 9, 1458.
[6]
(a) Diesel, J.; Cramer, N. ACS Catal. 2019, 9, 9164.
[6]
(b) Liu, W.; Ke, J.; He, C. Chem. Sci. 2021, 12, 10972.
[7]
For examples of synthesis of chiral sulfoximines via asymmetric C—H activation, see: (a) Sun, Y.; Cramer, N. Angew. Chem., Int. Ed. 2018, 57, 15539.
[7]
(b) Brauns, M.; Cramer, N. Angew. Chem., Int. Ed. 2019, 58, 8902.
[7]
(c) Shen, B.; Wan, B.; Li, X. Angew. Chem., Int. Ed. 2018, 57, 15534.
[7]
(d) Zhou, T.; Qian, P.-F.; Li, J.-Y.; Zhou, Y.-B.; Li, H.-C.; Chen, H.-Y.; Shi, B.-F. J. Am. Chem. Soc. 2021, 143, 6810.
[7]
(e) Mukherjee, K.; Grimblat, N.; Sau, S.; Ghosh, K.; Shankar, M.; Gandon, V.; Sahoo, A. K. Chem. Sci. 2021, 12, 14863.
[7]
(f) Huang, L.-T.; Hirata, Y.; Kato, Y.; Lin, L.; Kojima, M.; Yoshino, T.; Matsunaga, S. Synthesis 2021, 53, DOI: 10.1055/a-1588-0072.
[7]
(g) Wu, Q.; Shi, F. Chin. J. Org. Chem. 2021, 41, 3339. (in Chinese).
[7]
(吴琼, 石枫, 有机化学, 2021, 41, 3339.)
[7]
(h) Hou, Y.-X.; Hu. X.-Q. Chin. J. Org. Chem. 2021, 41, 2920. (in Chinese).
[7]
(侯业星, 胡小强, 有机化学, 2021, 41, 2920.)
[8]
Zhu, Y.-C.; Li, Y.; Zhang, B.-C.; Zhang, F.-X.; Yang, Y.-N.; Wang, X.-S. Angew. Chem., Int. Ed. 2018, 57, 5129.
[9]
For early studies on PdII/MPAA-catalyzed enantioselective C—H activation, see: (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
[9]
(b) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
[9]
(c) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.
[9]
For reviews, see:
[9]
(d) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927.
[9]
(e) Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S.; Yu, J.-Q. Acc. Chem. Res. 2020, 53, 833.
[10]
Liu, W.; Yang, W., Zhu, J.; Guo, Y.; Wang, N.; Ke, J.; Yu, P.; He, C. ACS Catal. 2020, 10, 7207.
[11]
Zhou, T.; Jiang, M.-X.; Qian, P.-F.; Yao, Q.-J.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Org. Lett. 2021, 23, 7910.
[12]
For examples of Pd(II)-catalyzed asymmetric C—H activation using L-pGlu-OH as the chiral ligand, see: (a) Jin, L.; Yao, Q.-J.; Xie, P.-P.; Li, Y.; Zhan, B.-B.; Han, Y.-Q.; Hong, X.; Shi, B.-F. Chem 2020, 6, 497.
[12]
(b) Yao, Q.-J.; Xie, P.-P.; Wu, Y.-J.; Feng, Y.-L.; Teng, M.-Y.; Hong, X.; Shi, B.-F. J. Am. Chem. Soc. 2020, 142, 18266.
[12]
(c) Wu, Y.-J.; Xie, P.-P.; Zhou, G.; Yao, Q.-J.; Hong, X.; Shi, B.-F. Chem. Sci. 2021, 12, 9391.
[13]
(a) Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093.
[13]
(b) Luo, J.; Zhang, T.; Wang, L.; Liao, G.; Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, Y.; Lin, X.-F.; Shi, B.-F. Angew. Chem., Int. Ed. 2019, 58, 6708.
[13]
(c) Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F.; J. Am. Chem. Soc. 2019, 141, 4558.
[13]
(d) Zhan, B.-B.; Wang, L.; Luo, J.; Lin, X.-F.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 3568.
[13]
(e) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 3661.
[14]
(a) Jin, S.-S.; Wang, H.; Xu, M.-H. Chem. Commun. 2011, 47, 7230.
[14]
(b) Chen, G.-H.; Gui, J.-Y.; Li, L.-C.; Liao, J. Angew. Chem.,Int. Ed. 2011, 50, 7681.
[14]
(c) Qi, W.-Y.; Zhu, T.-S.; Xu, M.-H. Org. Lett. 2011, 13, 3410.
[14]
(d) Feng, X.-Q.; Nie, Y.-Z.; Yang, J.; Du, H.-F. Org. Lett. 2012, 14, 624.
[15]
CCDC 2125440 (3ao) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
文章导航

/