综述与进展

现场生成的金属纳米团簇催化的研究进展

  • 张金羽 ,
  • 刘天芬 ,
  • 王乐 ,
  • 王晓明
展开
  • a 上海工程技术大学化学化工学院 上海 201620
    b 中国科学院上海有机化学研究所 上海 200032
共同第一作者

收稿日期: 2022-03-31

  修回日期: 2022-05-04

  网络出版日期: 2022-05-18

Recent Process in the in situ Generated Metal Nanocluster Catalysis

  • Jinyu Zhang ,
  • Tianfen Liu ,
  • Le Wang ,
  • Xiaoming Wang
Expand
  • a College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620
    b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
These authors contributed equally to this work.

Received date: 2022-03-31

  Revised date: 2022-05-04

  Online published: 2022-05-18

摘要

在一个金属催化体系中, 不论催化剂前体是金属盐、金属络合物或纳米粒子, 在反应过程中都可能现场发生转变生成单核络合物、多核团簇和纳米粒子等. 综述了在一些代表性的金属催化的合成方法学中现场生成的纳米团簇粒子为催化活性物种的例子, 并讨论纳米团簇粒子的形成、表征以及其催化作用.

本文引用格式

张金羽 , 刘天芬 , 王乐 , 王晓明 . 现场生成的金属纳米团簇催化的研究进展[J]. 有机化学, 2022 , 42(8) : 2331 -2341 . DOI: 10.6023/cjoc202203060

Abstract

In transition metal catalyzed reactions using simple metal salts, metal complexes, or nanoparticles as catalyst precursors, the metal sources may transfer to other species in situ, such as mono metal species, metal clusters and nanoparticles. Herein, the representative examples of the in situ generated metal nanoclusters as the catalytically active species in synthetic methodologies are reviewed, including their in situ formation, characterization and effect in catalysis.

参考文献

[1]
(a) Han, W. P. Introduction to Catalytic Chemistry, Science Press, Beijing, 2003. (in Chinese)
[1]
(韩维屏, 催化化学导论, 科学出版社, 北京, 2003.)
[1]
(b) Tang, X. D.; Wang, H.; Wang, F. Industrial Catalysis, Chemical Industry Press, Beijing, 2020. (in Chinese)
[1]
(唐晓东, 王宏, 汪芳, 工业催化, 化学工业出版社, 北京, 2020.)
[1]
(c) Rothenberg, G. Catalysis: Concepts and Green Applications, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
[2]
(a) Liu, L.; Corma, A. Trends Chem. 2020, 2, 383.
[2]
(b) Eremin, D. B.; Ananikov, V. P. Coord. Chem. Rev. 2017, 346, 2.
[3]
(a) Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740.
[3]
(b) Liu, J. ACS Catal. 2017, 7, 34.
[3]
(c) Wang, A.; Li, Jun.; Zhang, T. Nat. Rev. Chem. 2018, 2, 65.
[3]
(d) Zhang, W.; Fu, Q.; Luo, Q.; Sheng, L.; Yang, J. JACS Au 2021, 1, 2130.;
[3]
(e) Liu, L.; Corma, A. Chem. Rev. 2018, 118, 4981.
[3]
(f) Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev. 2020, 120, 623.
[4]
(a) Buchwalter, P.; Rosé, J.; Braunstein, P. Chem. Rev. 2015, 115, 28.
[4]
(b) Tang, J.; Zhao, L. Chem. Commun. 2020, 56, 1915.
[4]
(c) Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Chem. Rev. 2020, 120, 526.
[4]
(d) Somorjai, G. A.; Contreras, A. M.; Montano, M.; Rioux, R. M. Proc. Natl. Acad. Sci. 2006, 103, 10577.
[4]
(e) Polte, J. CrystEngComm 2015, 17, 6809.
[5]
Russell, M. J.; White, C.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1977, 427.
[6]
Collman, J. P.; Kosydar, K. M.; Bressan, M.; Lamanna, W.; Garrett, T. J. Am. Chem. Soc. 1984, 106, 2569.
[7]
Bayram, E.; Linehan, J. C.; Fulton, J. L.; Szymczak, N. K.; Finke, R. G. ACS Catal. 2015, 5, 3876.
[8]
Kim, S.; Loose, F.; Bezdek, M. J.; Wang, X.; Chirik, P. J. J. Am. Chem. Soc. 2019, 141, 17900.
[9]
Lavallo, V.; Canac, Y.; DeHope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2005, 44, 7236.
[10]
Wei, Y.; Rao, B.; Cong, X.; Zeng, X. J. Am. Chem. Soc. 2015, 137, 9250.
[11]
(a) Wiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Science 2017, 357, 908.
[11]
(b) Wiesenfeldt, M. P.; Knecht, T.; Schlepphorst, C.; Glorius, F. Angew. Chem. Int. Ed. 2018, 57, 8297.
[11]
(d) Wollenburg, M.; Moock, D.; Glorius, F. Angew. Chem. Int. Ed. 2019, 58, 6549.
[11]
(e) Ling, L.; He, Y.; Zhang, X.; Luo, M.; Zeng, X. Angew. Chem. Int. Ed. 2019, 58, 6554.
[11]
(f) Zhang, X.; Ling, L.; Luo, M.; Zeng, X. Angew. Chem. Int. Ed. 2019, 58, 16785.
[11]
(g) Nairoukh, Z.; Wollenburg, M.; Schlepphorst, C.; Bergander, K.; Glorius, F. Nat. Chem. 2019, 11, 264.
[12]
(a) Tran, B. L.; Fulton, J. L.; Linehan, J. C.; Lercher, J. A.; Bullock, R. M. ACS Catal. 2018, 8, 8441.
[12]
(b) Tran, B. L.; Fulton, J. L.; Linehan, J. C.; Balasubramanian, M.; Lercher, J. A.; Bullock, R. M. ACS Catal. 2019, 9, 4106.
[13]
Hansen, M. R.; Glorius, F. ACS Catal. 2020, 10, 6309.
[14]
Gartner, D.; Stein, A. L.; Grupe, S.; Arp, J.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2015, 54, 10545.
[15]
Gieshoff, T. N.; Chakraborty, U.; Villa, M.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2017, 56, 3585.
[16]
Dai, H.; Guan, H. ACS. Catal. 2018, 8, 9125.
[17]
Sandl, S.; Schwarzhuber, F.; Pollath, S.; Zweck, J.; Jacobi von Wangelin, A. Chem.-Eur. J. 2018, 24, 3403.
[18]
Gregori, B. J.; Nowakowski, M.; Schoch, A.; Pöllath, S.; Zweck, J.; Bauer, M.; Jacobi von Wangelin, A. ChemCatChem 2020, 12, 5359.
[19]
Buslov, I.; Song, F.; Hu, X. Angew. Chem. Int. Ed. 2016, 55, 12295.
[20]
Rivero-Crespo, M. A.; Leyva-Perez, A.; Corma, A. Chem.-Eur. J. 2017, 23, 1702.
[21]
Li, C.; Song, S.; Li, Y.; Xu, C.; Luo, Q.; Guo, Y.; Wang, X. Nat. Commun. 2021, 12, 3813.
[22]
(a) Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Nat. Chem. 2017, 9, 595.
[22]
(b) Peng, J.; Thomas, S. P. Synlett 2020, 31, 1140.
[23]
Ghosh, P.; Schoch, R.; Bauer, M.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2022, 61, e202110821.
[24]
Oliver-Meseguer, J.; Cabrero-Antonino, J. R.; Domínguez, I.; Leyva-Pérez, A.; Corma, A. Science 2012, 338, 1452.
[25]
Leyva-Pérez, A.; Oliver-Meseguer, J.; Rubio-Marqués, P.; Corma, A. Angew. Chem. Int. Ed. 2013, 52, 11554.
[26]
Oliver-Meseguer, J.; Liu, L.; Garcia-Garcia, S.; Canos-Gimenez, C.; Dominguez, I.; Gavara, R.; Domenech-Carbo, A.; Concepcion, P.; Leyva-Perez, A.; Corma, A. J. Am. Chem. Soc. 2015, 137, 3894.
[27]
Neumeier, M.; Chakraborty, U.; Schaarschmidt, D.; de la Pena O'Shea, V.; Perez-Ruiz, R.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2020, 59, 13473.
[28]
Song, S.; Li, C.; Liu, T.; Zhang, P.; Wang, X. Org. Lett. 2021, 23, 6925.
文章导航

/