研究论文

光催化氧化交叉偶联制备对称/不对称硫代磺酸酯

  • 赵健铭 ,
  • 朱佳顺 ,
  • 沈佳斌 ,
  • 张怡岚 ,
  • 李万梅
展开
  • 杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121

收稿日期: 2022-01-27

  修回日期: 2022-04-21

  网络出版日期: 2022-06-01

基金资助

浙江省自然科学基金(LY21B060009); 浙江省“万人计划”(2019R51012)

Photocatalyzed Oxidative Cross-Coupling Reaction to Access Symmetrical/Unsymmetrical Thiosulfonates

  • Jianming Zhao ,
  • Jiashun Zhu ,
  • Jiabin Shen ,
  • Yilan Zhang ,
  • Wanmei Li
Expand
  • Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121
* Corresponding author. E-mail:

Received date: 2022-01-27

  Revised date: 2022-04-21

  Online published: 2022-06-01

Supported by

Natural Science Foundation of Zhejiang Province(LY21B060009); “Ten-Thousand Talents Plan” of Zhejiang Province(2019R51012)

摘要

由于其清洁绿色等特点, 光催化合成已成为国际化学研究的前沿. 报道了一种以硫醇为原料、selectfluor为氧化剂, eosin Y为光催化剂, 在蓝光光照下构建S—S(O)2键的方法. 该方法具有条件温和, 官能团兼容性良好, 各种硫醇都能以较好的转化率转化成相应的硫代磺酸酯等优点, 可为开发条件温和、原子经济性高、普适性强的催化体系以实现含硫有机物高效且可控转化提供了非常有价值的参考.

本文引用格式

赵健铭 , 朱佳顺 , 沈佳斌 , 张怡岚 , 李万梅 . 光催化氧化交叉偶联制备对称/不对称硫代磺酸酯[J]. 有机化学, 2022 , 42(9) : 2940 -2946 . DOI: 10.6023/cjoc202201046

Abstract

Photocatalysis has become the forefront of international chemical research due to its green and environmentally friendly characteristics. A new protocol to construct S—S(O)2 bonds using selectfluor as oxidant and eosin Y as photocatalyst under blue light irradiation was reported. This method has advantages of mild conditions, good compatibility of functional groups, and easily preparation of various symmetric or asymmetric thiosulfonates various from the corresponding mercaptans with good conversion rates. Thus, this protocol provides a very valuable reference for developing a catalytic system with mild conditions, high atomic economy and strong universality to achieve efficient and controllable conversion of sulfur-containing organic compounds.

参考文献

[1]
Wang, N. Z.; Saidhareddy, P.; Jiang, X. F. Nat. Prod. Rep. 2020, 37, 246.
[2]
Colomer, I.; Velado, M.; de la Pradilla, R. F.; Viso, A. Chem. Rev. 2017, 117, 4201.
[3]
Reddy, R. J.; Ball-Jones, M. P.; Davies, P. W. Angew. Chem., Int. Ed. 2017, 56, 13310.
[4]
Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.; Che, G. D.; Bao, D. H.; Qiao, W. H.; Sun, L. J.; Collins, M. R.; Fadeyi, O. O.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. Science 2018, 360, 75.
[5]
Mampuys, P.; McElroy, C. R.; Clark, J. H.; Orru, R. V. A.; Maes, B. U. W. Adv. Synth. Catal. 2020, 362, 3.
[6]
(a) Steudel, R. Chem. Rev. 2002, 102, 3905.
[6]
(b) Smith, M.; Hunter, R.; Stellenboom, N.; Usza, D. A.; Parker, M. I.; Hammouda, A. N. H.; Jackson, G.; Kaschula, C. H. Biochim. Biophys. Acta, Gen. Subj. 2016, 1860, 1439.
[6]
(c) Mai, S. Y.; Song, Q. L. Angew. Chem., Int. Ed. 2017, 56, 7952.
[7]
(a) Mampuys, P.; Zhu, Y. P.; Sergeyev, S.; Ruijter, E.; Orru, R. V. A.; Van Doorslaer, S.; Maes, B. U. W. Org. Lett. 2016, 18, 2808.
[7]
(b) Li, M.; Zheng, N.; Li, J.; Zheng, Y.; Song, W. Green Chem. 2020, 22, 23942.
[7]
(c) Li, J.; Li, M.; Duan, X.; Song, W. Tetrahedron Lett. 2020, 61, 152256.
[8]
(a) Sara, S.; Sima, A.; Mahdi, F. M. Synlett 2011, 319.
[8]
(b) Iranpoor, N.; Mohajer, D.; Rezaeifard, A.-R. Tetrahedron Lett. 2004, 45, 3811.
[9]
Zheng, Y.; Qing, F.-L.; Huang, Y.; Xu, X.-H. Adv. Synth. Catal. 2016, 358, 3477.
[10]
(a) Yang, F.-L.; Tian, S.-K. Angew. Chem. 2013, 125, 5029.
[10]
(b) Kumaraswamy, G.; Raju, R. Adv. Synth. Catal. 2014, 356, 2591.
[10]
(c) Wang, T.-T.; Yang, F.-L.; Tian, S.-K. Adv. Synth. Catal. 2015, 357, 928.
[10]
(d) Wang, F.-X.; Tian, S.-K. J. Org. Chem. 2015, 80, 12697.
[10]
(e) Singh, R.; Allam, B. K.; Singh, N.; Kumari, K.; Singh, S. K.; Singh, K. N. Org. Lett. 2015, 17, 2656.
[10]
(f) Pang, X.; Xiang, L.; Yang, X.; Yan, R. Adv. Synth. Catal. 2016, 358, 321.
[10]
(g) Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Green Chem. 2016, 18, 2609.
[11]
(a) Liang, G.; Chen, J.; Chen, J.; Li, W.; Chen, J.; Wu, H. Tetrahedron Lett. 2012, 53, 6768.
[11]
(b) Cao, L.; Luo, S.-H.; Jiang, K.; Hao, Z.-F.; Wang, B.-W.; Pang, C.-M.; Wang, Z.-Y. Org. Lett. 2018, 20, 4754.
[12]
Xu, H.; Zhang, Y.-F.; Lang, X. Chin. Chem. Lett. 2020, 6, 1520.
[13]
Sheng, W.; Shi, J.-L.; Hao, H.; Li, X.; Lang, X. J. Colloid Interface Sci. 2020, 565, 614.
[14]
He, J.; Chen, G.; Zhang, B.; Li, Y.; Chen, J.-R.; Xiao, W.-J.; Liu, F.; Li, C. Chem 2020, 6, 1149.
[15]
Masayuki, K.; Sayuri, N.; Yuki, N., Yuki, I.; Toshiaki, I.; Haruka, T.; Tomomi, O.; Honoka, H.; Yukari, K., Mari, K.; Kento, Y.; Takuya, N.; Shiro, Y. Tetrahedron 2014, 70, 2464.
[16]
Liang, X.; Xiong, M.; Zhu, H.; Shen, K.; Pan, Y. J. Org. Chem. 2019, 84, 11210.
[17]
Chen, Z.; Liu, C.; Liu, J.; Li, J.; Xi, S.; Chi, X.; Xu, H.; Park, I.-H.; Peng, X.; Xing, L; Yu, W.; Liu, X.; Zhong, L.; Leng, K.; Huang, W. Adv. Mater. 2020, 32, 1906437.
[18]
Cai, M.-T.; Lv, G.-S.; Chen, J.-X.; Gao, W.-X.; Ding, J.-C.; Wu, H.-Y. Chem. Lett. 2010, 39, 368.
[19]
Reddy, R.; Kumar, J.; Kumari, A. Eur. J. Org. Chem. 2019, 2019, 3771.
[20]
Natarajan, P. Tetrahedron Lett. 2015, 56, 4131.
[21]
Lv, M.; Liu, Y.; Li, K.; Yang, G. Synlett 2021, 32, 81.
[22]
Kim, J.; Par, S.; Kim, H.; Kim, J. Tetrahedron Lett. 2020, 61, 152112.
[23]
Strehl, J.; Hilt, G. Eur. J. Org. Chem. 2022, 2022, 35.
[24]
Nair, A. M.; Kumar, S.; Halder, I.; Volla, C. M. R. Org. Biomol. Chem. 2019, 17, 5897.
文章导航

/