光催化氧化交叉偶联制备对称/不对称硫代磺酸酯
收稿日期: 2022-01-27
修回日期: 2022-04-21
网络出版日期: 2022-06-01
基金资助
浙江省自然科学基金(LY21B060009); 浙江省“万人计划”(2019R51012)
Photocatalyzed Oxidative Cross-Coupling Reaction to Access Symmetrical/Unsymmetrical Thiosulfonates
Received date: 2022-01-27
Revised date: 2022-04-21
Online published: 2022-06-01
Supported by
Natural Science Foundation of Zhejiang Province(LY21B060009); “Ten-Thousand Talents Plan” of Zhejiang Province(2019R51012)
赵健铭 , 朱佳顺 , 沈佳斌 , 张怡岚 , 李万梅 . 光催化氧化交叉偶联制备对称/不对称硫代磺酸酯[J]. 有机化学, 2022 , 42(9) : 2940 -2946 . DOI: 10.6023/cjoc202201046
Photocatalysis has become the forefront of international chemical research due to its green and environmentally friendly characteristics. A new protocol to construct S—S(O)2 bonds using selectfluor as oxidant and eosin Y as photocatalyst under blue light irradiation was reported. This method has advantages of mild conditions, good compatibility of functional groups, and easily preparation of various symmetric or asymmetric thiosulfonates various from the corresponding mercaptans with good conversion rates. Thus, this protocol provides a very valuable reference for developing a catalytic system with mild conditions, high atomic economy and strong universality to achieve efficient and controllable conversion of sulfur-containing organic compounds.
Key words: thiol; photocatalysis; oxidative coupling; thiosulfonate
| [1] | Wang, N. Z.; Saidhareddy, P.; Jiang, X. F. Nat. Prod. Rep. 2020, 37, 246. |
| [2] | Colomer, I.; Velado, M.; de la Pradilla, R. F.; Viso, A. Chem. Rev. 2017, 117, 4201. |
| [3] | Reddy, R. J.; Ball-Jones, M. P.; Davies, P. W. Angew. Chem., Int. Ed. 2017, 56, 13310. |
| [4] | Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.; Che, G. D.; Bao, D. H.; Qiao, W. H.; Sun, L. J.; Collins, M. R.; Fadeyi, O. O.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. Science 2018, 360, 75. |
| [5] | Mampuys, P.; McElroy, C. R.; Clark, J. H.; Orru, R. V. A.; Maes, B. U. W. Adv. Synth. Catal. 2020, 362, 3. |
| [6] | (a) Steudel, R. Chem. Rev. 2002, 102, 3905. |
| [6] | (b) Smith, M.; Hunter, R.; Stellenboom, N.; Usza, D. A.; Parker, M. I.; Hammouda, A. N. H.; Jackson, G.; Kaschula, C. H. Biochim. Biophys. Acta, Gen. Subj. 2016, 1860, 1439. |
| [6] | (c) Mai, S. Y.; Song, Q. L. Angew. Chem., Int. Ed. 2017, 56, 7952. |
| [7] | (a) Mampuys, P.; Zhu, Y. P.; Sergeyev, S.; Ruijter, E.; Orru, R. V. A.; Van Doorslaer, S.; Maes, B. U. W. Org. Lett. 2016, 18, 2808. |
| [7] | (b) Li, M.; Zheng, N.; Li, J.; Zheng, Y.; Song, W. Green Chem. 2020, 22, 23942. |
| [7] | (c) Li, J.; Li, M.; Duan, X.; Song, W. Tetrahedron Lett. 2020, 61, 152256. |
| [8] | (a) Sara, S.; Sima, A.; Mahdi, F. M. Synlett 2011, 319. |
| [8] | (b) Iranpoor, N.; Mohajer, D.; Rezaeifard, A.-R. Tetrahedron Lett. 2004, 45, 3811. |
| [9] | Zheng, Y.; Qing, F.-L.; Huang, Y.; Xu, X.-H. Adv. Synth. Catal. 2016, 358, 3477. |
| [10] | (a) Yang, F.-L.; Tian, S.-K. Angew. Chem. 2013, 125, 5029. |
| [10] | (b) Kumaraswamy, G.; Raju, R. Adv. Synth. Catal. 2014, 356, 2591. |
| [10] | (c) Wang, T.-T.; Yang, F.-L.; Tian, S.-K. Adv. Synth. Catal. 2015, 357, 928. |
| [10] | (d) Wang, F.-X.; Tian, S.-K. J. Org. Chem. 2015, 80, 12697. |
| [10] | (e) Singh, R.; Allam, B. K.; Singh, N.; Kumari, K.; Singh, S. K.; Singh, K. N. Org. Lett. 2015, 17, 2656. |
| [10] | (f) Pang, X.; Xiang, L.; Yang, X.; Yan, R. Adv. Synth. Catal. 2016, 358, 321. |
| [10] | (g) Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Green Chem. 2016, 18, 2609. |
| [11] | (a) Liang, G.; Chen, J.; Chen, J.; Li, W.; Chen, J.; Wu, H. Tetrahedron Lett. 2012, 53, 6768. |
| [11] | (b) Cao, L.; Luo, S.-H.; Jiang, K.; Hao, Z.-F.; Wang, B.-W.; Pang, C.-M.; Wang, Z.-Y. Org. Lett. 2018, 20, 4754. |
| [12] | Xu, H.; Zhang, Y.-F.; Lang, X. Chin. Chem. Lett. 2020, 6, 1520. |
| [13] | Sheng, W.; Shi, J.-L.; Hao, H.; Li, X.; Lang, X. J. Colloid Interface Sci. 2020, 565, 614. |
| [14] | He, J.; Chen, G.; Zhang, B.; Li, Y.; Chen, J.-R.; Xiao, W.-J.; Liu, F.; Li, C. Chem 2020, 6, 1149. |
| [15] | Masayuki, K.; Sayuri, N.; Yuki, N., Yuki, I.; Toshiaki, I.; Haruka, T.; Tomomi, O.; Honoka, H.; Yukari, K., Mari, K.; Kento, Y.; Takuya, N.; Shiro, Y. Tetrahedron 2014, 70, 2464. |
| [16] | Liang, X.; Xiong, M.; Zhu, H.; Shen, K.; Pan, Y. J. Org. Chem. 2019, 84, 11210. |
| [17] | Chen, Z.; Liu, C.; Liu, J.; Li, J.; Xi, S.; Chi, X.; Xu, H.; Park, I.-H.; Peng, X.; Xing, L; Yu, W.; Liu, X.; Zhong, L.; Leng, K.; Huang, W. Adv. Mater. 2020, 32, 1906437. |
| [18] | Cai, M.-T.; Lv, G.-S.; Chen, J.-X.; Gao, W.-X.; Ding, J.-C.; Wu, H.-Y. Chem. Lett. 2010, 39, 368. |
| [19] | Reddy, R.; Kumar, J.; Kumari, A. Eur. J. Org. Chem. 2019, 2019, 3771. |
| [20] | Natarajan, P. Tetrahedron Lett. 2015, 56, 4131. |
| [21] | Lv, M.; Liu, Y.; Li, K.; Yang, G. Synlett 2021, 32, 81. |
| [22] | Kim, J.; Par, S.; Kim, H.; Kim, J. Tetrahedron Lett. 2020, 61, 152112. |
| [23] | Strehl, J.; Hilt, G. Eur. J. Org. Chem. 2022, 2022, 35. |
| [24] | Nair, A. M.; Kumar, S.; Halder, I.; Volla, C. M. R. Org. Biomol. Chem. 2019, 17, 5897. |
/
| 〈 |
|
〉 |