研究论文

可见光促进异腈插入反应合成硒代螺环[吲哚-3,3'-喹啉]衍生物

  • 刘浩阳 ,
  • 孙爽爽 ,
  • 马献力 ,
  • 陈艳艳 ,
  • 徐燕丽
展开
  • 桂林医学院药学院 广西桂林 541004

收稿日期: 2022-04-07

  修回日期: 2022-05-27

  网络出版日期: 2022-06-09

基金资助

国家自然科学基金(21861015); 广西高等学校千名中青年骨干教师培育计划资助项目

Synthesis of Selenylated Spiro[indole-3,3'-quinoline] Derivatives via Visible-Light-Promoted Isocyanide Insertion

  • Haoyang Liu ,
  • Shuangshuang Sun ,
  • Xianli Ma ,
  • Yanyan Chen ,
  • Yanli Xu
Expand
  • College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004
* Corresponding authors. E-mail: ;

Received date: 2022-04-07

  Revised date: 2022-05-27

  Online published: 2022-06-09

Supported by

National Natural Science Foundation of China(21861015); Cultivation Plan of Thousands of Young and Middle-aged Backbone Teachers in Guangxi Colleges and Universities

摘要

发展了一种无光敏剂参与的可见光促进异腈插入反应合成硒代螺环[吲哚-3,3'-喹啉]衍生物的方法. 该反应操作简便, 具有官能团兼容性好、底物适用性广和产率高的优点. 通过噻唑蓝(MTT)测试, 发现产物2-苯基-2'-苯硒基-6'-三氟甲基-4'H-螺[吲哚-3,3'-喹啉](3g)、2-苯基-2'-(4-氟苯硒基)-5'-溴-4'H-螺[吲哚-3,3'-喹啉](4d)、2-苯基-2'-(4-(三氟甲基)苯硒基)-4'H-螺[吲哚-3,3'-喹啉](4g)能有效抑制肿瘤细胞的增长.

本文引用格式

刘浩阳 , 孙爽爽 , 马献力 , 陈艳艳 , 徐燕丽 . 可见光促进异腈插入反应合成硒代螺环[吲哚-3,3'-喹啉]衍生物[J]. 有机化学, 2022 , 42(9) : 2867 -2876 . DOI: 10.6023/cjoc202204019

Abstract

A photosensitizer-free visible-light-promoted isocyanide insertion protocol for the synthesis of selenylated spiro[indole-3,3'-quinoline] derivatives has been developed, which has the advantages of functional group tolerance, broad substrate scope, simple operation, and good yield. 2-Phenyl-2'-(phenylselanyl)-6'-(trifluoromethyl)-4'H-spiro[indole-3,3'-quinoline] (3g), 5-bromo-2'-((4-fluorophenyl)selanyl)-2-phenyl-4'H-spiro[indole-3,3'-quinoline] (4d) and 2-phenyl-2'-((4-(trifluoromethyl)phenyl)selanyl)-4'H-spiro[indole-3,3'-quinoline] (4g) showed potent cancer-cell-growth inhibitory activities by methyl thiazolyl tetrazolium (MTT) assay.

参考文献

[1]
(a) Chen, Z.; Lai, H.; Hou, L.; Chen, T. Chem. Commun. 2020, 56, 179;
[1]
(b) Lagunes, I.; Begines, P.; Silva, A.; Galan, A. R.; Puerta, A.; Fernandes, M. X.; Maya, I.; Fernandez-Bolanos, J. G.; Lopez, O.; Padron, J. M. Eur. J. Med. Chem. 2019, 179, 493.
[2]
Manjare, S. T.; Kim, Y.; Churchill, D. G. Acc. Chem. Res. 2014, 47, 2985.
[3]
(a) Sahu, P. K.; Umme, T.; Yu, J. H.; Nayak, A.; Kim, G.; Noh, M.; Lee, J. Y.; Kim, D. D.; Jeong, L. S. J. Med. Chem. 2015, 58, 8734.
[3]
(b) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255.
[4]
(a) Meng, X.; Zhong, P.; Wang, Y.; Wang, H.; Tang, H.; Pan, Y. Adv. Synth. Catal. 2020, 362, 506.
[4]
(b) Wang, X.; Zhong, Y.; Mo, Z.; Wu, S.; Xu, Y.; Tang, H.; Pan, Y. Adv. Synth. Catal. 2021, 363, 208.
[4]
(c) Sun, K.; Wang, S.; Feng, R.; Zhang, Y.; Wang, X.; Zhang, Z.; Zhang, B. Org. Lett. 2019, 21, 2052.
[4]
(d) Li, J. X.; Liu, X.; Deng, J. D.; Huang, Y. S.; Pan, Z. H.; Yu, Y.; Cao, H. Chem. Commun. 2020, 56, 735.
[4]
(e) Zhang, Z.; Wang, S.; Tan, P.; Gu, X.; Sun, W.; Liu, C.; Chen, J.; Li, J.; Sun, K. Org. Lett. 2022, 24, 2288.
[5]
Hiesinger, K.; Dar'in, D.; Proschak, E.; Krasavin, M. J. Med. Chem. 2021, 64, 150.
[6]
(a) Mondal, S.; Yetra, S. R.; Mukherjee, S.; Biju, A. T. Acc. Chem. Res. 2019, 52, 425.
[6]
(b) Boddy, A. J.; Bull, J. A. Org. Chem. Front. 2021, 8, 1026.
[7]
Bora, D.; Kaushal, A.; Shankaraiah, N. Eur. J. Med. Chem. 2021, 215, 113263.
[8]
James, M. J.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. Chem. Eur. J. 2016, 22, 2856.
[9]
Nasri, S.; Bayat, M.; Mirzaei, F. Top. Curr. Chem. 2021, 379, 25.
[10]
(a) Liu, H.; Fang, Y.; Wang, S.; Ji, S. J. Org. Chem. 2020, 85, 3508.
[10]
(b) Fang, Y.; Zhu, Z.; Xu, P.; Wang, S.; Ji, S. Green Chem. 2017, 19, 1613.
[10]
(c) Fang, Y.; Wang, S.; Shen, X.; Ji, S. Org. Chem. Front. 2015, 2, 1338.
[10]
(d) Fujiwara, S.; Asanuma, Y.; Shin-Ike, T.; Kambe, N. J. Org. Chem. 2017, 72, 8087.
[10]
(e) Liu, H.; Fang, Y.; Wang, S.; Ji, S. Org. Lett. 2018, 20, 930.
[10]
(f) Liu, H.; Fang, Y.; Yin, L.; Wang, S.; Ji, S. J. Org. Chem. 2017, 82, 10866.
[11]
Mitamura, T.; Iwata, K.; Nomoto, A.; Ogawa, A. Org. Biomol. Chem. 2011, 9, 3768.
[12]
Tran, C. C.; Kawaguchi, S.; Sato, F.; Nomoto, A.; Ogawa, A. J. Org. Chem. 2020, 85, 7258.
[13]
Zhou, X.; Liu, H.; Mo, Z.; Ma, X.; Chen, Y.; Tang, H.; Pan, Y.; Xu, Y. Chem. Asian J. 2020, 15, 1536.
[14]
(a) Ma, X.; Wang, Q.; Feng, X.; Mo, Z.; Pan, Y.; Chen, Y.; Xin, M.; Xu, Y. Green Chem. 2019, 21, 3547.
[14]
(b) Cui, F.; Chen, J.; Mo, Z.; Su, S.; Chen, Y.; Ma, X.; Tang, H.; Wang, H.; Pan, Y.; Xu, Y. Org. Lett. 2018, 20, 925.
[14]
(c) Zhang, J.; Liu, H.; Fan, T.; Chen, Y.; Xu, Y. Adv. Synth. Catal. 2021, 363, 497.
[14]
(d) Liu, H.; Zhang, J.; Huang, G.; Zhou, Y.; Chen, Y.; Xu, Y. Adv. Synth. Catal. 2021, 363, 1656.
[14]
(e) Zhou, X.; Zhang, N.; Li, Y.; Mo, Z.; Ma, X.; Chen, Y.; Xu, Y. Green. Synth. Catal. 2021, 2, 397.
[15]
(a) Ito, O. J. Am. Chem. Soc. 1983, 105, 850.
[15]
(b) Dong, J.; Liu, P.; Sun, P. J. Org. Chem. 2015, 80, 2925.
[16]
Zhang, J.; Xu, W.; Qu, Y.; Liu, Y.; Li, Y.; Song, H.; Wang, Q. Chem. Commun. 2020, 56, 15212.
[17]
Wang, Q.; Ma, X.; Chen, Y.; Jiang, C.; Xu, Y. Eur. J. Org. Chem. 2020, 4384.
文章导航

/