研究简报

镍催化芳基碳酸酯和芳基氨基磺酸酯与环烯烃的Heck反应

  • 曾旭群 ,
  • 张倩 ,
  • 吴旭枫 ,
  • 张静枫 ,
  • 张鑫伟 ,
  • 黄晓雷
展开
  • 浙江师范大学化学与生命科学学院 先进催化材料教育部重点实验室 浙江金华 321004

收稿日期: 2022-04-14

  修回日期: 2022-05-20

  网络出版日期: 2022-06-09

基金资助

浙江省自然科学基金(LQ22B020002)

Nickel-Catalyzed Heck Reaction of Cycloalkenes with Inert C—O Bonds of Aryl Carbonates and Aryl Sulfamates

  • Xuqun Zeng ,
  • Qian Zhang ,
  • Xufeng Wu ,
  • Jingfeng Zhang ,
  • Xinwei Zhang ,
  • Xiaolei Huang
Expand
  • Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004
* Corresponding author. E-mail:

Received date: 2022-04-14

  Revised date: 2022-05-20

  Online published: 2022-06-09

Supported by

Zhejiang Provincial Natural Science Foundation(LQ22B020002)

摘要

报道了一种高效的镍催化芳基碳酸酯和芳基氨基磺酸酯的惰性C—O键与环烯烃的Heck反应. 带有各种官能团的萘基、杂环以及苯基碳酸酯均能在由二价镍、PhBPE配体和还原性金属锌组成的催化体系中顺利反应.

本文引用格式

曾旭群 , 张倩 , 吴旭枫 , 张静枫 , 张鑫伟 , 黄晓雷 . 镍催化芳基碳酸酯和芳基氨基磺酸酯与环烯烃的Heck反应[J]. 有机化学, 2022 , 42(9) : 2981 -2987 . DOI: 10.6023/cjoc202204034

Abstract

An efficient nickel-catalyzed Heck reaction of cycloalkenes with inert C—O bonds of aryl carbonates and sulfamates has been developed. Naphthyl, heterocycles and simple phenyl substituted carbonates with various functional groups are compatible with the catalytic systems comprising Ni(II), PhBPE ligand and reductive metal Zn.

参考文献

[1]
For selected reviews, see: (a) Zheng, Y.-L.; Newman, S. G.. Chem. Commun. 2021, 57, 2591.
[1]
(b) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J. Chem. Rev. 2020, 120, 6124.
[1]
(c) Boit, T. B.; Bulger, A. S.; Dander, J. E.; Garg, N. K. ACS Catal. 2020, 10, 12109.
[1]
(d) Cheng, L.; Zhou, Q. Acta Chim. Sinica 2020, 78, 1017. (in Chinese)
[1]
(程磊, 周其林, 化学学报, 2020, 78, 1017.)
[1]
(e) Wu, L.; Wei, H.; Shen, J.; Chen, J.; Zhang, W. Acta Chim. Sinica 2021, 79, 1331. (in Chinese)
[1]
(吴良, 魏瀚林, 申杰峰, 陈建中, 张万斌, 化学学报, 2021, 79, 1331.)
[1]
(f) Liang, L.; Zhang, L.; Peng, Y.; Liu, H. Chin. J. Org. Chem. 2022, 42, 1033. (in Chinese)
[1]
(梁陆祺, 张立志, 彭永利, 刘会, 有机化学, 2022, 42, 1033.)
[2]
For selected reviews, see: (a) Qiu, Z.; Li, C.-J. Chem. Rev. 2020, 120, 10454.
[2]
(b) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270.
[2]
(c) Mesganaw, T.; Garg, N. K. Org. Process Res. Dev. 2013, 17, 29.
[2]
(d) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
[2]
(e) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.-Eur. J. 2011, 17, 1728.
[3]
For selected examples, see: (a) Hong, X.; Liang, Y.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 2017.
[3]
(b) Uthayopas, C.; Surawatanawong, P. Dalton Trans. 2019, 48, 7817.
[3]
(c) Gan, Y.; Wang, G.; Xie, X.; Liu, Y. J. Org. Chem. 2018, 83, 14036.
[3]
(d) Takise, R.; Itami, K.; Yamaguchi, J. Org. Lett. 2016, 18, 4428.
[3]
(e) Yang, J.; Chen, T.; Han, L.-B. J. Am. Chem. Soc. 2015, 137, 1782.
[3]
(f) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010, 43, 1486.
[4]
Rappoport, Z. The Chemistry of Phenols, Wiley: Chichester, U. K., 2003.
[5]
(a) Peng, Y.; Han, C.; Luo, Y.; Li, G.; Huo, X.; Zhang, W. Angew. Chem. Int. Ed. 2022, 61, e202203448.
[5]
(b) Gupta, A.; Kumar, J.; Bhadra, S. Org. Biomol. Chem. 2018, 16, 3716.
[6]
Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K. J. Am. Chem. Soc. 2009, 131, 17748.
[7]
Kuwano, R.; Shimizu, R. Chem. Lett., 2011, 40, 913.
[8]
Guo, L.; Hsiao, C.-C.; Yue, H.; Liu, X.; Rueping, M. ACS Catal. 2016, 6, 4438.
[9]
Purohit, P.; Seth, K.; Kumar, A.; Chakraborti, A. K. ACS Catal. 2017, 7, 2452.
[10]
Yue, H.; Guo, L.; Liu, X.; Rueping, M. Org. Lett. 2017, 19, 1788.
[11]
For selected examples: (a) Zhang, H.; Wu, X.; Wei, Y.; Zhu, C. Org. Lett. 2019, 21, 7568.
[11]
(b) White, L. V.; Schwartz, B. D.; Banwell, M. G.; Willis, A. C. J. Org. Chem. 2011, 76, 6250.
[11]
(c) Lim, Y.; Park, Y.-S.; Kang, Y.; Jang, D. Y.; Kim, J. H.; Kim, J.-J.; Sellinger, A.; Yoon, D. J. Am. Chem. Soc. 2011, 133, 1375.
[11]
(d) Yanagisawa, A.; Nishimura, K.; Ando, K.; Nezu, T.; Maki, A.; Kato, S.; Tamaki, W.; Imai, E.; Mohri, S.-I. Org. Process Res. Dev. 2010, 14, 1182.
[11]
(e) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed., 2005, 44, 4442.
[12]
For selected reviews and examples, see: (a) Dong, X.; Hou, Y.; Meng, F.; Liu, H.; Liu, H. Chin. J. Org. Chem. 2017, 37, 1088. (in Chinese)
[12]
(董旭, 侯永正, 孟凡威, 刘洪波, 刘会, 有机化学, 2017, 37, 1088.)
[12]
(b) Walker, B. R.; Sevov, C. S. ACS Catal. 2019, 9, 7197.
[12]
(c) Ehle, A. R.; Zhou, Q.; Watson, M. P. Org. Lett. 2012, 14, 1202.
[12]
(d) Gøgsig, T. M.; Kleimark, J.; Nilsson Lill, S. O.; Korsager, S.; Lindhardt, A. T.; Norrby, P.-O.; Skrydstrup, T. J. Am. Chem. Soc. 2011, 134, 443.
[12]
(e) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.
[12]
(f) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
[12]
(g) Heck, R. F. Acc. Chem. Res. 1979, 12, 146.
[13]
(a) Djakovitch, L.; Wagner, M.; Hartung, C. G.; Beller, M.; Koehler, K. J. Mol. Catal. A: Chem. 2004, 219, 121.
[13]
(b) Bräse, S.; Schroen, M. Angew. Chem. Int. Ed. 1999, 38, 1071.
[13]
(c) Hartung, C. G.; Köhler, K.; Beller, M. Org. Lett. 1999, 1, 709.
[14]
For selected reviews and examples: (a) Huang, X.; Teng, S.; Chi, Y. R.; Xu, W.; Pu, M.; Wu, Y.-D.; Zhou, J. S. Angew. Chem. Int. Ed. 2021, 60, 2828.
[14]
(b) Jiao, Z.; Shi, Q.; Zhou, J. S. Angew. Chem. Int. Ed. 2017, 56, 14567.
[14]
(c) Desrosiers, J.-N.; Wen, J.; Tcyrulnikov, S.; Biswas, S.; Qu, B.; Hie, L.; Kurouski, D.; Wu, L.; Grinberg, N.; Haddad, N.; Busacca, C. A.; Yee, N. K.; Song, J. J.; Garg, N. K.; Zhang, X.; Kozlowski, M. C.; Senanayake, C. H. Org. Lett. 2017, 19, 3338.
[14]
(d) Oliveira, C. C.; Pfaltz, A.; Correia, C. R. D. Angew. Chem. Int. Ed. 2015, 54, 14036.
[14]
(e) Hu, J.; Hirao, H.; Li, Y.; Zhou, J. Angew. Chem. Int. Ed. 2013, 52, 8676.
[14]
(f) Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338, 1455.
[14]
(g) Mc Cartney, D.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122.
[14]
(h) Tietze, L. F.; Ila, H.; Bell, H. P. Chem. Rev. 2004, 104, 3453.
[14]
(i) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945.
[15]
(a) Zhou, J. S.; Huang, X.; Teng, S.; Chi, Y. R. Chem. Commun. 2021, 57, 3933.
[15]
(b) Wu, X.; Lu, Y.; Hirao, H.; Zhou, J. S. Chem.-Eur. J., 2013, 19, 6014.
[15]
(c) Phipps, R. J.; McMurray, L.; Ritter, S.; Duong, H. A.; Gaunt, M. J. J. Am. Chem. Soc. 2012, 134, 10773.
[15]
(d) Artuso, E.; Barbero, M.; Degani, I.; Dughera, S.; Fochi, R. Tetrahedron 2006, 62, 3146.
[16]
Quasdorf, K. W.; Antoft-Finch, A.; Liu, P.; Silberstein, A. L.; Komaromi, A.; Blackburn, T.; Ramgren, S. D.; Houk, K. N.; Snieckus, V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 6352.
文章导航

/