综述与进展

三氟甲硫基自由基引发不饱和烃的串联反应

  • 石云 ,
  • 肖婷 ,
  • 夏冬 ,
  • 杨文超
展开
  • a 江苏医药职业学院药学院 江苏盐城 224005
    b 扬州大学园艺与植物保护学院 江苏扬州 225009
    c 扬州大学广陵学院 江苏扬州 225009

收稿日期: 2022-03-12

  修回日期: 2022-05-07

  网络出版日期: 2022-06-17

基金资助

江苏省高校自然科学基金(19KJB150020)

SCF3 Radical Initiated Cascade Reaction of Unsaturated Hydrocarbon

  • Yun Shi ,
  • Ting Xiao ,
  • Dong Xia ,
  • Wenchao Yang
Expand
  • a College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005
    b School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009
    c Guangling College, Yangzhou University, Yangzhou, Jiangsu 225009
* Corresponding authors. E-mail: ;

Received date: 2022-03-12

  Revised date: 2022-05-07

  Online published: 2022-06-17

Supported by

Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB150020)

摘要

含氟有机化合物因其特殊的物理与化学性能, 在医药和农药等学科中被广泛应用, 这就促使含氟官能团经常被引入到先导化合物中以改善其理化性能. 三氟甲硫基官能团在众多含氟化合物中具有重要的地位, 因为他们具有高电负性和特殊的亲脂性. 因此, 向化合物中引入三氟甲硫基在有机氟化学领域备受关注. 综述了近年来三氟甲硫基自由基引发不饱和烃的串联反应的研究进展, 涵盖反应设计、反应机理和研究展望等内容.

本文引用格式

石云 , 肖婷 , 夏冬 , 杨文超 . 三氟甲硫基自由基引发不饱和烃的串联反应[J]. 有机化学, 2022 , 42(9) : 2715 -2727 . DOI: 10.6023/cjoc202203041

Abstract

Fluorinated compounds have been widely used in pharmaceuticals, pesticides and other disciplines due to their special physical and chemical properties, which motivates the frequent introduction of fluorinated functionalities into lead compounds to improve their physical and chemical properties. The trifluoromethylthio (SCF3) group with high electronegativity and special lipophilicity plays an important role in a multitude of fluorinated compounds. The recent progress in the field of cascade reaction of unsaturated hydrocarbon initiated by SCF3 radical, including reaction design, reaction mechanism and outlook, is summarized.

参考文献

[1]
(a) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
[1]
(b) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441.
[1]
(c) Zhang, X.; Tang, P. Sci. China: Chem. 2019, 62, 525.
[1]
(d) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
[1]
(e) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536.
[2]
(a) Dong, D.-Q.; Yang, H.; Shi, J.-L.; Si, W.-J.; Wang, Z.-L.; Xu, X.-M. Org. Chem. Front. 2020, 7, 2538.
[2]
(b) Wang, Z.; Sun, Y.; Shen, L.-Y.; Yang, W.; Meng, F.; Li, P. Org. Chem. Front. 2022, 9, 853.
[3]
(a) Zhang, K.; Xu, X.; Qing, F. Chin. J. Org. Chem. 2015, 35, 556. (in Chinese)
[3]
(张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
[3]
(b) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
[4]
(a) Yang, W.-C.; Feng, J.-G.; Wu, L.; Zhang, Y.-Q. Adv. Synth. Catal. 2019, 361, 1700.
[4]
(b) Si, Y.-F.; Lv, Q.-Y.; Yu, B. Adv. Synth. Catal. 2021, 363, 4640.
[4]
(c) Lv, Y.; Cui, H.; Meng, N.; Yue, H.; Wei, W. Chin. Chem. Lett. 2022, 33, 97.
[5]
Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128.
[6]
(a) Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.
[6]
(b) Li, M.; Sun, K. Chin. J. Org. Chem. 2022, 42, 2089. (in Chinese)
[6]
(李猛, 孙凯, 有机化学, 2022, 42, 2089.)
[7]
(a) Honeker, R.; Garza-Sanchez, R. A.; Hopkinson, M. N.; Glorius, F. Chem.-Eur. J. 2016, 22, 4395.
[7]
(b) Dagousset, G.; Simon, C.; Anselmi, E.; Tuccio, B.; Billard, T.; Magnier, E. Chem.-Eur. J. 2017, 23, 4282.
[8]
Chen, M.-T.; Tang, X.-Y.; Shi, M. Org. Chem. Front. 2017, 4, 86.
[9]
Liu, B.; Wang, Z.; Sun, K.; Tang, S.; Wang, X. Chin. J. Org. Chem. 2022, 42, 1387. (in Chinese)
[9]
(刘冰, 王智传, 孙凯, 唐石, 王薪, 有机化学, 2022, 42, 1387.)
[10]
Guo, J.; Hao, Y.; Li, G.; Wang, Z.; Liu, Y.; Li, Y.; Wang, Q. Org. Biomol. Chem. 2020, 18, 1994.
[11]
Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520.
[12]
Song, Y.-K.; Qian, P.-C.; Chen, F.; Deng, C.-L.; Zhang, X.-G. Tetrahedron 2016, 72, 7589.
[13]
Wang, L.; Wang, H.; Meng, W.; Xu, X.-H.; Huang, Y. Chin. Chem. Lett. 2021, 32, 389.
[14]
Qiu, Y.-F.; Zhu, X.-Y.; Li, Y.-X.; He, Y.-T.; Yang, F.; Wang, J.; Hua, H.-L.; Zheng, L.; Wang, L.-C.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2015, 17, 3694.
[15]
Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Org. Chem. Front. 2015, 2, 1511.
[16]
(a) Yang, W.-C.; Zhang, M.-M.; Feng, J.-G. Adv. Synth. Catal. 2020, 362, 4446.
[16]
(b) Jin, D.-P.; Gao, P.; Chen, D.-Q.; Chen, S.; Wang, J.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 3486.
[16]
(c) Zhang, M.; Shen, L.; Dong, S.; Li, B.; Meng, F.; Si, W.; Yang, W. Eur. J. Org. Chem. 2021, 2021, 4465.
[16]
(d) Shen, L.; Sun, Y.; Wang, Y.; Li, B.; Yang, W.; Dai, P. Tetrahedron 2022, 106-107, 132649.
[16]
(e) Feng, J.; Chen, W.; Liu, Q.; Chen, Z.; Yang, J.; Yang, W. Pest Manage. Sci. 2020, 76, 4192.
[17]
Bi, M.-X.; Liu, S.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Beilstein J. Org. Chem. 2020, 16, 657.
[18]
(a) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
[18]
(b) Zhang, M.-M.; Sun, Y.; Wang, W.-W.; Chen, K.-K.; Yang, W.-C.; Wang, L. Org. Biomol. Chem. 2021, 19, 3844.
[18]
(c) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
[18]
(d) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[18]
(e) Yang, W.-C.; Zhang, M.-M.; Sun, Y.; Chen, C.-Y.; Wang, L. Org. Lett. 2021, 23, 6691.
[18]
(g) Jiang, Y.-M.; Yu, Y.; Wu, S.-F.; Yan, H.; Yuan, Y.; Ye, K.-Y. Chem. Commun. 2021, 57, 11484.
[19]
(a) Wu, W.; Dai, W.; Ji, X.; Cao, S. Org. Lett. 2016, 18, 2918.
[19]
(b) Zheng, C.; Huang, S.; Liu, Y.; Jiang, C.; Zhang, W.; Fang, G.; Hong, J. Org. Lett. 2020, 22, 4868.
[20]
(a) Guo, C.-H.; Chen, D.-Q.; Chen, S.; Liu, X.-Y. Adv. Synth. Catal. 2017, 359, 2901.
[20]
(b) Li, H.; Liu, S.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Chem. Commun. 2017, 53, 10136.
[21]
(a) Pan, S.; Li, H.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2017, 19, 3247.
[21]
(b) Cheng, Z.-F.; Tao, T.-T.; Feng, Y.-S.; Tang, W.-K.; Xu, J.; Dai, J.-J.; Xu, H.-J. J. Org. Chem. 2018, 83, 499.
[21]
(c) Wang, J.-Y.; Ma, L.; Li, Y.; Wang, X. Chin. J. Org. Chem. 2019, 39, 232. (in Chinese)
[21]
(王建勇, 马岚, 李彦, 王细胜, 有机化学, 2019, 39, 232.)
[22]
Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2019, 58, 18508.
[23]
Zhang, Q.; Li, X.; Zhang, W.; Wang, Y.; Pan, Y. Org. Lett. 2021, 23, 5410.
[24]
(a) Zhang, X.-G.; He, Z.-X.; Guo, P.; Chen, Z.; Ye, K.-Y.; Org. Lett. 2022, 24, 22.
[24]
(b) Li, D.; Yang, W. Tetrahedron Lett. 2019, 60, 1792.
[24]
(c) Yang, W.; Li, B.; Zhang, M.; Wang, S.; Ji, Y.; Dong, S.; Feng, J.; Yuan, S. Chin. Chem. Lett. 2020, 31, 1313.
[24]
(d) Shi, Y.-F.; Lv, Q.-Y.; Yu, B. Adv. Synth. Catal. 2021, 363, 4640.
[24]
(e) Wang, X.; Lei, J.; Guo, S.; Zhang, Y.; Ye, Y.; Tang, S.; Sun, K. Chem. Commun. 2022, 58, 1526.
[25]
(a) Pan, S.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2017, 19, 4624.
[25]
(b) Li, Y.; Koike, T.; Akita, M. Asian J. Org. Chem. 2017, 6, 445.
[25]
(c) Li, X.; Zhang, Q.; Zhang, W.; Ma, J.; Wang, Y.; Pan, Y. Beilstein J. Org. Chem. 2021, 17, 551.
[26]
(a) Ji, M.; Yu, J.; Zhu, C. Chem. Commun. 2018, 54, 6812.
[26]
(b) Wu, S.; Wu, X.; Wu, Z.; Zhu, C. Sci. China: Chem. 2019, 62, 1507.
[26]
(c) Liu, K.; Jin, Q.; Chen, S.; Liu, P. RSC Adv. 2017, 7, 1546.
[26]
(d) Chen, D.; Ji, M.; Yao, Y.; Zhu, C. Acta Chim. Sinica 2018, 76, 951. (in Chinese)
[26]
(陈栋, 吉梅山, 姚英明, 朱晨, 化学学报, 2018, 76, 951.)
[26]
(e) Zhang, H.; Ji, M.; Wei, Y.; Chen, H.; Wu, X.; Zhu, C. Synlett 2021, 32, 401.
[26]
(f) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C. Adv. Synth. Catal. 2017, 359, 1959.
文章导航

/