研究论文

甲醇为氢源的α-芳基亚胺酸酯不对称转移氢化反应

  • 王婷 ,
  • 陈景超 ,
  • 王轮 ,
  • 王喆婷 ,
  • 樊保敏
展开
  • a云南民族大学 民族药资源化学国家民委-教育部重点实验室 昆明 650500
    b云南民族大学化学与环境学院 昆明 650500

收稿日期: 2022-04-18

  修回日期: 2022-07-11

  网络出版日期: 2022-08-10

基金资助

国家自然科学基金(21961045); 国家自然科学基金(22061048)

Asymmetric Transfer Hydrogenation of α-Aryl Amidates Using Methanol as Hydrogen Source

  • Ting Wang ,
  • Jingchao Chen ,
  • Lun Wang ,
  • Zheting Wang ,
  • Baomin Fan
Expand
  • aKey Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500
    bSchool of Chemistry and Environment, Yunnan Minzu University, Kunming 650500

Received date: 2022-04-18

  Revised date: 2022-07-11

  Online published: 2022-08-10

Supported by

National Natural Science Foundation of China(21961045); National Natural Science Foundation of China(22061048)

摘要

手性芳基甘氨酸作为氨基酸衍生物的一种, 不仅在有机合成领域中具有非常重要的应用价值, 还是许多手性药物和生物活性化合物的关键结构单元. 报道了一种实用、经济的制备手性α-芳基甘氨酸的方法. 以甲醇为氢源, 在Pd/ Zn共催化体系下, α-芳基亚胺酸酯发生不对称转移加氢反应, 获得了一系列手性α-芳基甘氨酸衍生物, 同时以氘代甲醇为氘源获得了一系列手性氘代α-芳基甘氨酸衍生物. 该催化体系具有良好的底物适用性, 收率高达93%, 对映选择性高达92%, 氘代率高达94%, 为获得有价值的氘标记手性氨基酸提供了一种高效、经济的手段.

本文引用格式

王婷 , 陈景超 , 王轮 , 王喆婷 , 樊保敏 . 甲醇为氢源的α-芳基亚胺酸酯不对称转移氢化反应[J]. 有机化学, 2022 , 42(11) : 3693 -3703 . DOI: 10.6023/cjoc202204047

Abstract

As a kind of amino acid derivatives, chiral arylglycine not only has very important application value in the field of organic synthesis, but also serves as the key structure of many chiral drugs and biologically active compounds. A practical and economical method for the preparation of chiral α-arylglycines is reported herein. By using methanol as the hydrogen source, a series of chiral α-arylglycine derivatives were prepared by asymmetric transfer hydrogenation of α-aryl imine esters with Pd/Zn co-catalyzed system. By switching the hydrogen source to deuterated methanol, a series of chiral deuterated a-arylglycine derivatives were obtained. The catalytic system featured with good substrate suitability, and the product was obtained in up to 93% yield with up to 92% enantioselectivity, and the deuteration incorporation rate is up to 94%. The present method has provided an efficient and economic method for the synthesis of valuable deuterium-labeled chiral amino acids.

参考文献

[1]
Choi, K. Y. ChemBioEng Rev. 2021, 8, 1.
[2]
Bongioanni, A.; Bueno, M. S.; Mezzano, B. A.; Longhi, M. R.; Garnero, C. Int. J. Pharm. 2022, 613, 121375.
[3]
Diaz, I.; Namkoong, J.; Wu, J. Q.; Giancola, G. J. Cosmet. Dermatol. 2022, 7, 3046.
[4]
Zhao, C. J.; Schieber, A.; G?nzle, M. G. Food Res. Int. 2016, 89, 39.
[5]
Xue, Y. P.; Cao, C. H.; Zheng, Y. G. Chem. Soc. Rev. 2018, 47, 1516.
[6]
(a) Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. J. Med. Chem. 2019, 62, 5276.
[6]
(b) Tung, R. D. Future Med. Chem. 2016, 8, 491.
[6]
(c) Schofield, J.; Derdau, V.; Atzrodt, J.; Zane, P.; Guo, Z.; van Horn, R.; Czepczor, V.; Stoltz, A.; Pardon, M. Bioorg. Med. Chem. 2015, 23, 3831.
[7]
(a) Zhang, J. Y.; Yuan, Z. K.; Zhang, Y.; Han, W. N. J. Harbin Med. Univ. 2014, 48, 255. (in Chinese)
[7]
( 张佳宇, 苑振宽, 张宇, 韩维娜, 哈尔滨医科大学学报, 2014, 48, 255.)
[7]
(b) Li, X. H.; Lu, H. M.; Wang, X. L.; Cheng, Q.; Li, D. G.; Jiang, Z. M.; Gu, H. D.; Xia, Z. Q.; Dai, T. C.; Zhang, J. H. Chin. J. Dig. 1994, 182. (in Chinese)
[7]
( 李宣海, 陆汉明, 王秀玲, 陈强, 李定国, 蒋祖明, 顾鹤定, 夏宗勤, 戴腾昌, 张建华, 中华消化杂志, 1994, 182.)
[8]
Faraggi, T. M.; Virbel, C. R.; Rincón, J. A.; Barberis, M.; Mateos, C.; Cerrada, S. G.; Agejas, J.; Frutos, O.; MacMillan, D. Org. Process Res. Dev. 2021, 25, 1966.
[9]
He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J. Q. Science 2014, 343, 1216.
[10]
Knoevenage, E.; Bergdolt, B. Chem. Ber. 1903, 36, 2857.
[11]
Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621.
[12]
Shang, G.; Yang, Q.; Zhang, X. M. Angew. Chem., Int. Ed. 2006, 45, 6360.
[13]
(a) Noyori, R. Adv. Synth. Catal. 2003, 345, 15.
[13]
(b) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.
[13]
(c) Saudan, L. A. Acc. Chem. Res. 2007, 40, 1309.
[13]
(d) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
[13]
(e) Wang, C.; Wu, X.; Xiao, J. Asian J. Org. Chem. 2008, 3, 1750.
[13]
(f) Blaser, H. U. Top. Catal. 2010, 53, 997.
[14]
Chen, J. Z.; Li, F. L.; Wang, F.; Hu, Y. W.; Zhang, Z. F.; Zhao, M.; Zhang, W. B. Org. Lett. 2019, 21, 9060.
[15]
Liu, D.; Li, B. W.; Chen, J. Z.; Gridnev, I. D.; Yan, D. Y.; Zhang, W. B. Nat. Commun. 2020, 11, 1.
[16]
Marques, C. S.; Burke, A. J. Tetrahedron 2013, 69, 10091.
[17]
Yang, F.; Chen, J. C.; Shen, G. L.; Zhang, X. X.; Fan, B. M.; Etayo, P.; Ferran, V. Chem. Commun. 2018, 54, 4963.
[18]
Wang, Z. T. ; Yang, C. H. ; Chen, J. C. Yang, F.; Khan, R.; Yang, Y.; Qiao, X. f.; Su, Z. M.; Fan, B. M. Asian J. Org. Chem. 2021, 10, 1.
[19]
(a) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., Int. Ed. 2018, 57, 1758.
[19]
(b) Zhang, Z. D.; Wen, J.; Wang, M.-Y.; Yan, C.-G.; Shi, Z.-Z. Green Synth. Catal. 2021, 2, 275.
文章导航

/