综述与进展

以7-氮杂吲哚为内在导向基团的N-芳基C—H官能化研究进展

  • 袁成 ,
  • 潘长多
展开
  • 江苏理工学院化学化工学院 江苏常州 213001

收稿日期: 2022-05-20

  修回日期: 2022-06-29

  网络出版日期: 2022-08-10

Recent Advances in the N-Aryl C—H Functionalization Using 7-Azaindole as Intrinsic Directing Group

  • Cheng Yuan ,
  • Changduo Pan
Expand
  • School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001
* Corresponding author. E-mail:

Received date: 2022-05-20

  Revised date: 2022-06-29

  Online published: 2022-08-10

摘要

内在导向基团是底物中固有的官能团, 同时也是产物中的核心结构单元. 因此, 在C—H官能化反应中, 内在导向基团无需事先引入以及事后脱除. 在过渡金属催化的N-芳基-7-氮杂吲哚的N-芳基C—H官能化反应中, 7-氮杂吲哚往往作为内在的导向基团, 借助C—H官能化的反应策略, 在N-芳基的邻位引入各种官能团. 对过渡金属催化7-氮杂吲哚作为内在导向基的N-芳基C—H官能化的最新研究进展进行了概述.

本文引用格式

袁成 , 潘长多 . 以7-氮杂吲哚为内在导向基团的N-芳基C—H官能化研究进展[J]. 有机化学, 2023 , 43(1) : 156 -170 . DOI: 10.6023/cjoc202205034

Abstract

The intrinsic directing group is a functional group in the substrates and also serves as an essential component in products. Thus, the preinstallation and removal of directing groups are avoided. 7-Azaindole has been used as intrinsic directing group for the N-aryl-C—H functionalization of N-aryls under the catalysis of transition metals. Utilizing the C—H functionalization strategy, numerous functional groups were installed into the ortho-position of N-aryls of the corresponding N-aryl-7-azaindoles. In this review, the recent achievements on the transition-metal catalyzed N-aryl ortho-C—H functionalization directed by 7-azaindole are summarized.

参考文献

[1]
(a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
[1]
(b) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787.
[1]
(c) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016.
[1]
(d) Yuan, S.; Chang, J.; Yu, B. Top. Curr. Chem. 2020, 378, 23.
[1]
(e) Yang, Z.; Yu, J.-T.; Pan, C. Org. Biomol. Chem. 2021, 19, 8442.
[1]
(f) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B.-F. Chem. Rev. 2021, 121, 14957.
[1]
(g) Xie, J.; Pan, C.; Abdukader, A.; Zhu, C. Chem. Soc. Rev. 2014, 43, 5245.
[2]
(a) Sambiagio, C.; Sch?nbauer, D.; Blieck, R.; Dao-Huy, T.; Potot- schnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603.
[2]
(b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
[3]
(a) Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7222.
[3]
(b) Viart, H. M.-F.; Bachmann, A.; Kayitare, W.; Sarpong, R. J. Am. Chem. Soc. 2017, 139, 1325.
[3]
(c) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2008, 47, 4019.
[3]
(d) Lakshman, M. K.; Deb, A. C.; Chamala, R. R.; Pradhan, P.; Pratap, R. Angew. Chem., Int. Ed. 2011, 50, 11400.
[3]
(e) Kumar, S. V.; Ellairaja, S.; Satheesh, V.; Vasantha, V. S.; Punniyamurthy, T. Org. Chem. Front. 2018, 5, 2630.
[4]
(a) Song, J. J.; Reeves, J. T.; Gallou, F.; Tan, Z.; Yee, N. K.; Senanayake, C. H. Chem. Soc. Rev. 2007, 36, 1120.
[4]
(b) Mérour, J.-Y.; Buron, F.; Plé, K.; Bonnet, P.; Routier, S. Molecules 2014, 19, 19935.
[5]
(a) Wang, T.; Zhang, Z.; Wallace, O. B.; Deshpande, M.; Fang, H.; Yang, Z.; Zadjura, L. M.; Tweedie, D. L.; Huang, S.; Zhao, F.; Ranadive, S.; Robinson, B. S.; Gong, Y.-F.; Ricarrdi, K.; Spicer, T. P.; Deminie, C.; Rose, R.; Wang, H.-G. H.; Blair, W. S.; Shi, P.-Y.; Lin, P.-F.; Colonno, R. J.; Meanwell, N. A. J. Med. Chem. 2003, 46, 4236.
[5]
(b) Hardwicke, M. A.; Oleykowski, C. A.; Plant, R.; Wang, J.; Liao, Q.; Moss, K.; Newlander, K.; Adams, J. L.; Dhanak, D.; Yang, J.; Lai, Z.; Sutton, D.; Patrick, D. Mol. Cancer Ther. 2009, 8, 1808.
[5]
(c) Mullard, A. Nat. Rev. Drug Discovery 2012, 11, 91.
[6]
(a) Smith, N. D.; Cosford, N. D. P.; Reger, T. R.; Roppe, J. R.; Poon, S. F.; Huang, D.; Chen, C.; Eastman, B. W. WO 2003077918, 2003.
[6]
(b) Carry, J. C.; Mignani, S.; Evers, M.; Doerflinger, G.; Genevois, B. A.; Brun, A. Le.; Martin, J. P.; Desmazeau, P.; Kleemann, H. W. FR 2856062, 2004.
[6]
(c) Popowycz, F.; Routier, S.; Joseph, B.; Mérour, J.-Y. Tetrahedron 2007, 63, 1031.
[6]
(d) Mérour, J.-Y.; Buron, F.; Plé, K.; Bonnet, P.; Routier, S. Molecules 2014, 19, 19935.
[6]
(e) Vadukoot, A. K.; Sharma, S.; Aretz, C. D.; Kumar, S.; Gautam, N.; Alnouti, Y.; Aldrich, A. L.; Heim, C. E.; Kielian, T. Hopkins, C. R. ACS Med. Chem. Lett. 2020, 11, 1848.
[7]
(a) Chen, Y.; Guo, S.; Li, K.; Qu, J.; Yuan, H.; Hua, Q.; Chen, B. Adv. Synth. Catal. 2013, 355, 711.
[7]
(b) Kannaboina, P.; Anilkumar, K.; Aravinda, S.; Vishwakarma, R. A.; Das, P. Org. Lett. 2013, 15, 5718.
[7]
(c) Kannaboina, P.; Kumar, K. A.; Das, P. Org. Lett. 2016, 18, 900.
[7]
(d) Urvashi, Dar, M. O.; Bharatam, P. V.; Das, P.; Kukreti, S.; Tandon, V. Tetrahedron 2020, 76, 131337.
[7]
(e) Hu, J.; X. Ji, Hao, S.; Zhao, M.; Lai, M.; Ren, T.; Xi, G.; Wang, E.; Wang, J.; Wu, Z. RSC Adv. 2020, 10, 31819.
[7]
(f) Kannaboina, P.; Raina, G.; Kumara, K. A.; Das, P. Chem. Commun. 2017, 53, 9446.
[7]
(g) Laha, J. K.; Bhimpuria, R. A.; Prajapati, D. V.; Dayal, N.; Sharma, S. Chem. Commun. 2016, 52, 4329.
[8]
Li, S.-S.; Wang, C.-Q.; Lin, H.; Zhang, X.-M.; Dong, L. Org. Biomol. Chem. 2016, 14, 229.
[9]
Li, W.-H.; Wu, L.; Li, S.-S.; Liu, C.-F.; Zhang, G.-T.; Dong, L. Chem.-Eur. J. 2016, 22, 17926.
[10]
Liu, B.; Li, R.; Zhan, W.; Wang, X.; Ge, Z.; Li, R. RSC Adv. 2016, 6, 48205.
[11]
Morioka, R.; Satoh, T.; Miura, M. Chem. Lett. 2016, 45, 682.
[12]
Li, S.-S.; Wang, C.-Q.; Li, W.-H.; Zhang, X.-M.; Dong, L. Tetrahedron 2016, 72, 2581.
[13]
Liu, B.; Wang, X.; Ge, Z.-M.; Li, R.-T. Org. Biomol. Chem. 2016, 14, 2944.
[14]
(a) Wu, X.; Sun, S.; Yu, J.-T.; Cheng, J. Synlett 2019, 30, 21.
[14]
(b) Kumar, A.; Sharanappa, M. S.; Hanchate, V.; Prabhu, K. R. Tetrahedron 2021, 101, 132478.
[15]
Tian, Y.; Kong, X.-Q.; Niu, J.; Huang, Y.-O.; Wu, Z.-H.; Xu, B. Tetrahedron Lett. 2020, 61, 151627.
[16]
(a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
[16]
(b) Kumar, S.; Nunewar, S.; Oluguttula, S.; Nanduri, S.; Kan- chupalli, V. Org. Biomol. Chem. 2021, 19, 1438.
[17]
Yu, J.-T.; Shan, Y.-J.; Yuan, C.; Pan, C. Tetrahedron Lett. 2021, 62, 152703.
[18]
Liu, J.-D.; Jiang, J.-Y.; Yang, Z.-K.; Zeng, Q.-H.; Zheng, J.-Y.; Zhang, S.-Y.; Zheng, L.-Y.; Zhang, S.-S.; Liu, Z.-Q. Org. Biomol. Chem. 2021, 19, 993.
[19]
Jeong, T.; Lee, S. H.; Chun, R.; Han, S.; Han, S. H.; Jeon, Y. U.; Park, J.; Yoshimitsu, T.; Mishra, N. K.; Kim, I. S. J. Org. Chem. 2018, 83, 4641.
[20]
Rajput, S.; Kaur, R.; Jain, N. Org. Biomol. Chem. 2022, 20, 1453.
[21]
(a) Miller, J. S.; Manson, J. L. Acc. Chem. Res. 2001, 34, 563.
[21]
(b) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
[22]
Fatiadi, A. J.; Patai, S.; Rappoport, Z. Preparation and Synthetic Applications of Cyano Compounds, Wiley-VCH, New York, 1983.
[23]
Mishra, A.; Vats, T. K.; Deb, I. J. Org. Chem. 2016, 81, 6525.
[24]
Li, S.-S.; Wang, C.-Q.; Lin, H.; Zhang, X.-M.; Dong, L. Org. Lett. 2015, 17, 3018.
[25]
Li, S.-S.; Liu, C.-F.; Zhang, G.-T.; Xia, Y.-Q.; Li, W.-H.; Dong, L. Chem. Asian J. 2017, 12, 415.
[26]
Li, S.-S.; Lin, H.; Liu, C.-F.; Xia, Y.-Q.; Zhang, X.-M.; Dong, L. Adv. Synth. Catal. 2016, 358, 1595.
[27]
Li, S.-S.; Liu, C.-F.; Xia, Y.-Q.; Li, W.-H.; Zhang, G.-T.; Zhang, X.-M.; Dong, L. Org. Biomol. Chem. 2016, 14, 5214.
[28]
Li, S.-S.; Li, W.-H.; Zhang, G.-T.; Xia, Y.-Q.; Liu, C.-F.; Su, F.; Zhang, X.-M.; Dong, L. Org. Biomol. Chem. 2016, 14, 7859.
[29]
Liu, C.-F.; Zhang, G.-T.; Sun, J.-S.; Dong, L. Org. Biomol. Chem. 2017, 15, 2902.
[30]
Hong, X.-H.; Wang, H.; Qian, G.-Y.; Tan, Q.-T.; Xu, B. J. Org. Chem. 2014, 79, 3228.
[31]
Qian, G.-Y.; Hong, X.-H.; Liu, B.-X.; Mao, H.; Xu, B. Org. Lett. 2014, 16, 5294.
[32]
Mishra, A.; Vats, T. K.; Nair, M. P.; Das, A.; Deb, I. J. Org. Chem. 2017, 82, 12406.
[33]
Li, W.-H.; Dong, L. Adv. Synth. Catal. 2018, 360, 1104.
[34]
Sun, J.-S.; Liu, M.; Zhang, J.; Dong, L. J. Org. Chem. 2018, 83, 10555.
[35]
(a) Duquesne, S.; Destoumieux-Garzón, D.; Peduzzi, J.; Rebuffat, S. Nat. Prod. Rep. 2007, 24, 708.
[35]
(b) Phillips, D. R.; Uramoto, M.; Isono, K.; McCloskey, J. A. J. Org. Chem. 1993, 58, 854.
[35]
(c) Wagner, S. R. V.; Iyer, V.; McIntee, E. J. Med. Res. Rev. 2000, 20, 417.
[36]
(a) Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C. Tetrahedron Lett. 2008, 49, 687.
[36]
(b) Yadav, L. D. S.; Srivastava, V. P.; Patel, R. Tetrahedron Lett. 2008, 49, 5652.
[36]
(c) Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A. Tetrahedron Lett. 2007, 48, 8037.
[37]
Pan, C.; Wang, Y.; Wu, C.; Yu, J.-T. Org. Biomol. Chem. 2018, 16, 3711.
[38]
Kumar, M.; Raziullah, Ahmad, A.; Dutta, H. S.; Khan, A. A.; Rastogi, A.; Kant, R.; Koley, D. J. Org. Chem. 2021, 86, 15185.
[39]
Liu, S.-S.; Zhang, Y.-Y.; Zhao, C.; Zhou, X.-Y.; Liang, J.-H.; Zhang, P.-J.; Jiao, L.-Y.; Yang, X.-F.; Ma, Y.-M. Org. Chem. Front. 2022, 9, 2093.
[40]
Jeon, M.; Park, J.; Dey, P.; Oh, Y.; Oh, H.; Han, S.; Um, S. H.; Kim, H. S.; Mishra, N. K.; Kim, I. S. Adv. Synth. Catal. 2017, 359, 3471.
[41]
(a) Liu, Y.-K.; Lou, S.-J.; Xu, D.-Q.; Xu, Z.-Y. Chem.-Eur. J. 2010, 16, 13590.
[41]
(b) Zhang, L.; Liu, Z.; Li, H.; Fang, G.; Barry, B.-D.; Belay, T. A.; Bi, X.; Liu, Q. Org. Lett. 2011, 13, 6536.
[41]
(c) Fan, Z.; Li, J.; Lu, H.; Wang, D.-Y.; Wang, C.; Uchiyama, M.; Zhang, A. Org. Lett. 2017, 19, 3199.
[41]
(d) Pawar, G. G.; Brahmanandan, A.; Kapur, M. Org. Lett. 2016, 18, 448.
[42]
Chun, R.; Kim, S.; Han, S. H.; Pandey, A. K.; Mishra, N. K.; Kim, I. S. Tetrahedron Lett. 2020, 59, 3848.
[43]
(a) Liu, N.-W.; Liang, S.; Manolikakes, G. Synthesis 2016, 48, 1939.
[43]
(b) Shaaban, S.; Liang, S.; Liu, N.-W.; Manolikakes, G. Org. Biomol. Chem. 2017, 15, 1947.
[44]
Vats, T. K.; Mishra, A.; Deb, I. Adv. Synth. Catal. 2018, 360, 2291.
[45]
Jian, Y.-R.; Yan, Z.-C.; Xiang, Z.; Xiong, Y.-S.; Duan, X.-M. Org. Biomol. Chem. 2021, 19, 2901.
文章导航

/