研究论文

碘化钾催化无保护8-氨基喹啉的选择性C(5)-芳基硫醚化和C(5),C(7)-双芳基硫醚化及吲哚C(2),C(3)-双芳基硫醚化反应

  • 吴豪志 ,
  • 罗田 ,
  • 姜建文 ,
  • 万结平
展开
  • 江西师范大学化学化工学院 南昌 330022

收稿日期: 2022-06-18

  修回日期: 2022-07-13

  网络出版日期: 2022-08-10

基金资助

国家自然科学基金(22161022)

KI-Catalyzed Selective C(5)-Sulfenylation and C(5),C(7)-Disulfenylation of Unprotected 8-Aminoquinolines and the Indole C(2),C(3)-Disulfenylation

  • Haozhi Wu ,
  • Tian Luo ,
  • Jianwen Jiang ,
  • Jieping Wan
Expand
  • College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022

Received date: 2022-06-18

  Revised date: 2022-07-13

  Online published: 2022-08-10

Supported by

National Natural Science Foundation of China(22161022)

摘要

报道了采用2.5 mol%碘化钾为唯一催化剂, 无需任何过渡金属催条件下无保护8-氨基喹啉的碳-氢甲芳基硫醚化反应. 有趣的是, 通过简单调控反应时间和介质可以实现选择性的C(5)-芳基硫醚化和C(5),C(7)-双芳基硫醚化. 在对二甲苯中反应12 h时为C(5)-芳基硫醚化. 另一方面, 延长反应时间至24 h并更换反应介质为甲苯则选择性地发生C(5),C(7)-双芳基硫醚化. 此外, 双芳基硫醚化反应可以扩展到吲哚类底物, 实现含2,3-二芳基硫醚结构的吲哚合成.

本文引用格式

吴豪志 , 罗田 , 姜建文 , 万结平 . 碘化钾催化无保护8-氨基喹啉的选择性C(5)-芳基硫醚化和C(5),C(7)-双芳基硫醚化及吲哚C(2),C(3)-双芳基硫醚化反应[J]. 有机化学, 2022 , 42(11) : 3721 -3729 . DOI: 10.6023/cjoc202206029

Abstract

The aromatic C—H sulfenylation reactions of unprotected 8-aminoquinolines have been realized by employing KI as the only catalyst at 2.5 mol% loading without using any transition metal reagent. Interestingly, the selective C(5)-sulfenylation and C(5),C(7)-disulfenylation have been successfully achieved by simply controlling the reaction time. Reaction time of 12 h in p-xylene enables the C(5)-sulfenylation. On the other hand, prolonging the reaction time to 24 h and switching the reaction medium to toluene lead to the selective C(5),C(7)-double sulfenylation. Moreover, the double sulfenylation has been extended to the indole substrate for the selective synthesis of 2,3-disulfenyl indoles.

参考文献

[1]
(a) Bisht, R.; Haldar, C.; Hassan, M. M. M.; Hoque, M. E.; Chaturvedi, J.; Chattopadhyay, B. Chem. Soc. Rev. 2022, 51, 5042.
[1]
(b) Liao, Y.; Liu, F.; Shi, Z.-J. Chem. Commun. 2021, 57, 13288.
[1]
(b) Ali, R.; Siddiqui, R. Adv. Synth. Catal. 2021, 363, 1290.
[1]
(d) Tian, S.; Luo, T.; Zhu, Y.; Wan, J.-P. Chin. Chem. Lett. 2020, 31, 3073.
[1]
(e) Zhao, B.; Liu, Y. Synthesis 2020, 52, 3211.
[1]
(f) Katariri, T.; Amao, Y. Green Chem. 2020, 22, 6682.
[2]
(a) Chen, Y.; Wen, S.; Tian, Q.; Zhang, Y.; Cheng, G. Org. Lett. 2021, 23, 7905.
[2]
(b) Yu, Q.; Liu, Y.; Wan, J.-P. Chin. Chem. Lett. 2021, 32, 3514.
[2]
(c) Moseev, T. D.; Nikiforov, E. A.; Varaksin, M. V.; Charushin, V. N.; Chupakhin, O. N. J. Org. Chem. 2021, 86, 13702.
[2]
(d) Selmani, A.; Schoenebeck, F. Org. Lett. 2021, 23, 4779.
[2]
(e) Han, Q.-Q.; Chen, D.-M.; Wang, Z.-L.; Sun, Y.-Y.; Yang, S.-H.; Song, J.-C.; Dong, D.-Q. Chin. Chem. Lett. 2021, 32, 2559.
[2]
(f) Zhu, H.-L.; Zeng, F.-L.; Chen, X.-L.; Sun, K.; Li, H.-C.; Yuan, X.-Y.; Qu, L.-B.; Yu, B. Org. Lett. 2021, 23, 2976.
[2]
(g) Liu, D.; Zhang, Z.; Yu, J.; Chen, H.; Lin, X.; Li, M.; Wen, L.; Guo, W. Org. Chem. Front. 2022, 9, 2963.
[2]
(h) Wang, Z.-Q.; Hou, C.; Zhong, Y.-F.; Lu, Y.-X.; Mo, Z.-Y.; Pan, Y.-M.; Tang, H.-T. Org. Lett. 2019, 21, 9841.
[3]
(a) Nandy, A.; Kazi, I.; Guha, S.; Sekar, G. J. Org. Chem. 2021, 86, 2570.
[3]
(b) Halimehjani, A. Z.; Shokrgozar, S.; Beier, P. J. Org. Chem. 2018, 83, 5778.
[3]
(c) Guo, W.-S.; Gong, H.; Zhang, Y.-A.; Wen, L.-R.; Li, M. Org. Lett. 2018, 20, 6394.
[3]
(d) Hazarika, S.; Barman, P. ChemistrySelect 2020, 5, 11583.
[3]
(e) Taninoto, K.; Ohkado, R.; Iida, H. J. Org. Chem. 2019, 84, 14980.
[3]
(f) Bai, F.; Zhang, S.; Wei, L.; Liu, Y. Asian J. Org. Chem. 2018, 7, 371.
[4]
(a) Zhang, B.; Liu, D.; Sun, Y.; Zhang, Y.; Feng, J.; Yu, F. Org. Lett. 2021, 23, 3076.
[4]
(b) Deng, L.; Liu, Y. ACS Omega 2018, 3, 11890.
[4]
(c) Zhang, C.; Luo, J.; Zhang, J.; Chen, L.; Zhu, X.; Guo, M.; Shen, C.; Li, Z.; Wang, W. Asian J. Org. Chem. 2022, 11, e202200014.
[4]
(d) Zhang, T.; Yao, W.; Wan, J.-P.; Liu, Y. Adv. Synth. Catal. 2021, 363, 4811.
[4]
(e) Ali, D.; Panday, A. K.; Choudhury, L. H. J. Org. Chem. 2020, 85, 13610.
[4]
(e) Zeng, F.-L.; Zhu, H.-L.; Chen, X.-L.; Qu, L.-B.; Yu, B. Green Chem. 2021, 23, 3677.
[5]
(a) Zhao, F.; Tan, Q.; Wang, D.; Chen, J.; Deng, G.-J. Adv. Synth. Catal. 2019, 361, 4075.
[5]
(b) Chen, L.; Xuchen, X.; Wang, F.; Yuang, Y.; Deng, G.; Liu, Y.; Liang, Y. Org. Biomol. Chem. 2021, 19, 10068.
[5]
(b) Tian, S.; Wang, C.; Xia, J.; Wan, J.-P.; Liu, Y. Adv. Synth. Catal. 2021, 363, 4627.
[5]
(c) Zhang, L.; Nagaraju, S.; Paplal, B.; Lin, Y.; Liu, S. Eur. J. Org. Chem. 2021, 1365.
[5]
(d) Hu, B.; Zhang, Q.; Zhao, S.; Wang, Y.; Xu, L.; Yan, S.; Yu, F. Adv. Synth. Catal. 2019, 361, 49.
[6]
(a) Xu, Z.; Yang, X.; Yin, S.; Qiu, R. Top. Curr. Chem. 2020, 378, 42.
[6]
(b) Khan, B.; Dutta, H. S.; Koley, D. Asian J. Org. Chem. 2018, 7, 1270.
[7]
(a) Guo, X.; Li, P.; Wang, Q.; Wang, Q.; Wang, L. Org. Chem. Front. 2022, 9, 3192.
[7]
(b) Wu, W.; Wu, M.; Yoshikai, N. Synthesis 2021, 53, 3144.
[7]
(b) Zhang, Y.; Wen, C.; Li, J. Org. Biomol. Chem. 2018, 16, 1912.
[7]
(c) Mondal, S.; Hajra, A. Org. Biomol. Chem. 2018, 16, 2846.
[7]
(d) Zhao, L.; Li, P.; Xie, X.; Wang, L. Org. Chem. Front. 2018, 5, 1689.
[8]
(a) Lin, X.; Zeng, C.; Liu, C.; Fang, Z.; Guo, K. Org. Biomol. Chem. 2021, 19, 1352.
[8]
(b) Wang, Y.; Wang, Y.; Jiang, K.; Zhang, Q.; Li, D. Org. Biomol. Chem. 2016, 14, 10180.
[8]
(c) Du, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2018, 83, 3403.
[8]
(d) Hou, J.; Wang, K.; Zhang, C.; Wei, T.; Bai, R.; Xie, Y. Eur. J. Org. Chem. 2020, 6382.
[8]
(e) Li, Y.; Zhu, L.; Cao, X.; Au, C.-T.; Qiu, R.; Yin, S.-F. Adv. Synth. Catal. 2017, 359, 2864.
[9]
(a) Dou, Y.; Xie, Z.; Sun, Z.; Fang, H.; Shen, C.; Zhang, P.; Zhu, Q. ChemCatChem 2016, 8, 3570.
[9]
(b) Sheng, L.; Shen, D.; Zhu, J.; Wu, G.; Fan, G.; Wu, X.; Du, K. Tetrahedron 2021, 85, 132033.
[9]
(c) Ji, D.; He, X.; Xu, Y.; Xu, Z.; Bian, Y.; Liu, W.; Zhu, Q.; Xu, Y. Org. Lett. 2016, 18, 4478.
[10]
(a) Xia, C.; Wang, K.; Xu, J.; Shen, C.; Sun, D.; Li, H.; Wang, G.; Zhang, P. Org. Biomol. Chem. 2017, 15, 531.
[10]
(b) Wen, C.; Zhong, R.; Qin, Z.; Zhao, M.; Li, J. Org. Biomol. Chem. 2020, 56, 9529.
[10]
(c) Mondal, S.; Hajra, A. J. Org. Chem. 2018, 83, 11392.
[11]
(a) Li, J.-M.; Weng, J.; Lu, G.; Chan, A. S. C. Tetrahedron Lett. 2016, 57, 2121.
[11]
(b) Chen, G.; Zhang, X.; Zeng, Z.; Peng, W.; Liang, Y.; Liu, J. ChemistrySelect 2017, 2, 1979.
[11]
(c) Liu, X.; Zhang, H.; Yang, F.; Wang, B. Org. Biomol. Chem. 2019, 17, 7564.
[11]
(d) Liang, S.; Manolikakes, G. M. Adv. Synth. Catal. 2016, 358, 2371.
[12]
Yu, Q.; Yang, Y.; Wan, J.-P.; Liu, Y. J. Org. Chem. 2018, 83, 11385.
[13]
Kumar, V.; Banert, K.; Ray, D.; Saha, B. Org. Biomol. Chem. 2019, 17, 10245.
[14]
(a) Fu, L.; Wan, J.-P.; Zhou, Y.; Liu, Y. Chem. Commun. 2022, 58, 1808.
[14]
(b) Luo, T.; Wu, H.; Liao, L.-h.; Wan, J.-P.; Liu, Y. J. Org. Chem. 2021, 86, 15785.
[14]
(c) Luo, T.; Tian, S.; Wan, J.-P.; Liu, Y. Curr. Org. Chem. 2021, 25, 1180.
[15]
(a) Pang, X.; Xiang, L.; Yang, X.; Yan, R. Adv. Synth. Catal. 2016, 358, 321.
[15]
(b) Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Green Chem. 2016, 18, 26093.
[15]
(c) Yang, F.-L.; Tian, S.-K. Angew. Chem., Int. Ed. 2013, 52, 4929.
[16]
Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100.
[17]
Chen, L.; Pu, J.; Liu, P.; Dai, B. J. Chem. Res. 2018, 42, 456.
文章导航

/