综述与进展

异腈参与的光催化反应研究进展

  • 何燕 ,
  • 黄天姿 ,
  • 史小琴 ,
  • 陈艳 ,
  • 吴琼
展开
  • 徐州工程学院材料与化学工程学院 江苏徐州 221018

收稿日期: 2022-06-09

  修回日期: 2022-07-20

  网络出版日期: 2022-08-18

Recent Advances in Photocatalytic Reactions with Isocyanides

  • Yan He ,
  • Tianzi Huang ,
  • Xiaoqin Shi ,
  • Yan Chen ,
  • Qiong Wu
Expand
  • School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018

Received date: 2022-06-09

  Revised date: 2022-07-20

  Online published: 2022-08-18

摘要

异腈是一类有价值的C1结构单元, 广泛应用于有机化学、组合化学、生物医药等领域, 其衍生物更是构建生物活性分子和复杂的天然产物的有效模块. 根据异腈参与光催化反应的机制进行分类, 综述了近五年异腈参与光催化反应的研究进展, 着重讨论了光催化剂、底物适用性以及反应机制, 并对该领域存在的挑战以及未来发展趋势进行了浅谈和展望.

本文引用格式

何燕 , 黄天姿 , 史小琴 , 陈艳 , 吴琼 . 异腈参与的光催化反应研究进展[J]. 有机化学, 2022 , 42(12) : 4220 -4246 . DOI: 10.6023/cjoc202206012

Abstract

Isocyanides are a class of valuable C1 building blocks, widely used in organic chemistry, combinatorial chemistry, biomedicine and other fields, and their derivatives are effective building blocks for the synthesis of bioactive molecules and complex natural products. Herein, the recent advances in photocatalytic reactions with isocyanides are summarized according to the types of the reaction mechanism. The photocatalyst, substrate range and reaction mechanism are emphatically discussed. Finally, the challenges and future development trends of this research field are discussed and prospected.

参考文献

[1]
Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985.
[2]
Ciamician, G. Science 1912, 36, 385.
[3]
Cano-Yelo, H.; Deronzier, A. J. Chem. Soc., 1984, 1093.
[4]
K?nig, B. Eur. J. Org. Chem. 2017, 1979.
[5]
Pandey, G.; Hajra, S.; Ghorai, M. K.; Kumar, K. R. J. Am. Chem. Soc. 1997, 119, 8777.
[6]
Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
[7]
(a) Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617.
[7]
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[7]
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
[7]
(d) Meggers, E. Chem. Commun. 2015, 51, 3290.
[7]
(e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[8]
(a) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
[8]
(b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
[8]
(c) Lang, X.; Zhao, J.; Chen, X. Chem. Soc. Rev. 2016, 45, 3026.
[9]
(a) Nenaydenko, V. G. Isocyanide Chemistry: Applications in Synthesis and Material Science, Wiley-VCH, Weinheim, Germany, 2012.
[9]
(b) Qiu, G.; Ding, Q.; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.
[9]
(c) Liu, J.; Fang, Z.; Zhang, Q.; Liu, Q.; Bi, X. Angew. Chem., Int. Ed. 2013, 52, 6953.
[9]
(d) Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev. 2014, 114, 8323.
[9]
(e) He, Y.; Wang, Y.-C.; Hu, K.; Xu, X.-L.; Wang, H.-S.; Pan, Y.-M. J. Org. Chem. 2016, 81, 11813.
[9]
(f) Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.
[9]
(g) Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.; Novellino, E.; Tron, G. C.; Zhu, J. Chem. Soc. Rev. 2017, 46, 1295.
[9]
(h) Zhang, R.; Gu, Z.-Y.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2018, 20, 5510.
[9]
(i) Wan, J.-P.; Gana, L.; Liu, Y. Org. Biomol. Chem. 2017, 15, 9031.
[9]
(j) He, Y.; Wang, Y.; Liang, X.; Huang, B.; Wang, H.; Pan, Y.-M. Org. Lett. 2018, 20, 7117.
[9]
(k) Tong, W.; Li, W.-H.; He, Y.; Mo, Z.-Y.; Tang, H.-T.; Wang, H.-S.; Pan, Y.-M. Org. Lett. 2018, 20, 2494.
[9]
(l) Cao, M.; Liu, L. Tang, S.; Peng, Z.; Wang, Y. Adv. Synth. Catal. 2019, 361, 1887.
[9]
(m) Wang, M.-R.; Deng, L.; Liu, G.-C.; Wen, L.; Wang, J.-G.; Huang, K.-B.; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2019, 21, 4929.
[9]
(n) Cao, M.; Fang, Y.-L.; Wang, Y.-C.; Xu, X.-J.; Xi, Z.-W.; Tang, S. ACS Comb. Sci. 2020, 22, 268.
[9]
(o) Cao, M.; Teng, Q.-H.; Xi, Z.-W.; Liu, L.-Q.; Gu, R.-Y.; Wang, Y.-C. Org. Biomol. Chem. 2020, 18, 655.
[9]
(p) Xi, Z.-W.; He, Y.; Liu, L.-Q.; Wang, Y.-C. Org. Biomol. Chem. 2020, 18, 8089.
[9]
(q) Li, Y.; Miao, T.; Li, P.; Wang, L. Org. Lett. 2018, 20, 1735.
[10]
Ren, X.; Lu, Z. Chin. J. Catal. 2019, 40, 1003.
[11]
Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 12715.
[12]
Hoffmann, N. Eur. J. Org. Chem. 2017, 15, 1982.
[13]
Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Top. Curr. Chem. 2007, 281, 143.
[14]
Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
[15]
Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc. 2004, 126, 2763.
[16]
(a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159.
[16]
(b) Juris, A.; Balzani, V.; Belser, P.; von Zelewsky, A. Helv. Chim. Acta 1981, 64, 2175.
[17]
Yi, M.-J.; Zhang, H.-X.; Xiao, T.-F.; Zhang, J.-H.; Feng, Z.-T.; Wei, L.-P.; Xu, G.-Q.; Xu, P.-F. ACS Catal. 2021, 11, 3466.
[18]
Ravelli, D.; Fagnonia, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
[19]
Vidyasagar, A.; Shi, J.; Kreitmeier, P.; Reiser, O. Org. Lett. 2018, 20, 6984.
[20]
Yuan, Y.; Dong, W.-H.; Gao, X.-S.; Xie, X.-M.; Zhang, Z.-G.; Chem. Commun. 2019, 55, 11900.
[21]
Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Zhang, Z. Org. Lett. 2019, 21, 469.
[22]
Zhang, X.; Zhu, P.; Zhang, R.; Li, X.; Yao, T. J. Org. Chem. 2020, 85, 9503.
[23]
Qin, W.-B.; Xiong, W.; Li, X.; Chen, J.-Y.; Lin, L.-T.; Wong, H. N. C.; Liu, G.-K. J. Org. Chem. 2020, 85, 10479.
[24]
Cannalire, R.; Amato, J.; Summa, V.; Novellino, E.; Tron, G. C.; Giustiniano, M. J. Org. Chem. 2020, 85, 14077.
[25]
Pelliccia, S.; Alfano, A. I.; Luciano, P.; Novellino, E.; Massarotti, A.; Tron, G. C.; Ravelli, D.; Giustiniano, M. J. Org. Chem. 2020, 85, 1981.
[26]
Cannalire, R.; Santoro, F.; Russo, C.; Graziani, G.; Tron, G. C.; Carotenuto, A.; Brancaccio, D.; Giustiniano, M. ACS Org. Inorg. Au 2022, 2, 66.
[27]
Zhang, J.; Xu, W.; Qu, Y.; Liu, Y.; Li, Y.; Song, H.; Wang, Q.; Chem. Commun. 2020, 56, 15212.
[28]
López-Mendoza, P.; Miranda, L. D. Org. Biomol. Chem. 2020, 18, 3487.
[29]
Yuan, Y.; Zhang, S.-Y.; Dong, W.-H.; Wu, F.; Xie, X.-M.; Zhang, Z.-G. Adv. Synth. Catal. 2021, 363, 4216.
[30]
Wei, J.; Gu, D.; Wang, S.; Hu, J.; Dong, X.; Sheng, R. Org. Chem. Front. 2018, 5, 2568.
[31]
Yuan, Y.; Dong, W.; Gao, X.; Gao, H.; Xie, X.; Zhang, Z. J. Org. Chem. 2018, 83, 2840.
[32]
Zhu, Z.-F.; Zhang, M.-M.; Liu, F. Org. Biomol. Chem. 2019, 17, 1531.
[33]
(a) Liu, W.; Ackermann, L. ACS Catal. 2016, 6, 3743.
[33]
(b) Mukherjee, A.; Milstein, D. ACS Catal. 2018, 8, 11435.
[33]
(c) Rohit, K. R.; Radhika, S.; Saranya, S.; Anilkumar, G. Adv. Synth. Catal. 2020, 362, 1602.
[33]
(d) Cano, R.; Mackey, K.; McGlacken, G. P. Catal. Sci. Technol. 2018, 8, 1251.
[33]
(e) Das, K.; Mondal, A.; Pal, D.; Srivastava, H. K.; Srimani, D. Organometallics 2019, 38, 1815.
[33]
(f) Das, K.; Mondal, A.; Srimani, D. Chem. Commun. 2018, 54, 10582.
[33]
(g) Das, K.; Mondal, A.; Srimani, D. J. Org. Chem. 2018, 83, 9553.
[34]
Cheng, W.-M.; Shang, R. ACS Catal. 2020, 10, 9170.
[35]
Wang, L.; Ding, Q.; Li, X.; Peng, Y. Asian J. Org. Chem. 2019, 8, 385.
[36]
Wei, W.; Bao, P.; Yue, H.; Liu, S.; Wang, L.; Li, Y.; Yang, D. Org. Lett. 2018, 20, 5291.
[37]
Singh, M.; Yadav, A. K.; Yadav, L. D. S.; Singh, R. K. P. Synlett 2018, 29, 176.
[38]
Lv, Y.; Bao, P.; Yue, H.; Li, J.-S.; Wei, W. Green Chem. 2019, 21, 6051.
[39]
Yang, W.; Li, B.; Zhang, M.; Wang, S.; Ji, Y.; Dong, S.; Feng, J.; Yuan, S. Chin. Chem. Lett. 2020, 31, 1313.
[40]
Singh, H. K.; Kamal, A.; Kumari, S.; Maury, S. K.; Kushwaha, A. K.; Srivastava, V.; Singh, S. ChemistrySelect 2021, 6, 13982.
[41]
Dahiya, A.; Das, B.; Sahoo, A. K.; Patel, B. K. Adv. Synth. Catal. 2022, 364, 966.
[42]
Liu, Y.; Kang, Y.; Wang, H.; Dong, Y.; Yang, T.; Wei, Q.; Jiang, Y.; Yang, Y.; Gao, H. Tetrahedron Lett. 2020, 61, 152348.
[43]
(a) Jones, G. H.; Edwards, D. W.; Parr, D. A. J. Chem. Soc., Chem. Commun. 1976, 969.
[43]
(b) West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6, 10093.
[44]
Singh, H. K.; Kamal, A.; Kumari, S.; Kumar, D.; Maury, S. K. Srivastava, V.; Singh, S. ACS Omega 2020, 5, 29854.
[45]
Santos, M. S.; Betim, H. L. I.; Kisukuri, C. M.; Delgado, J. A. C.; Corrêa, A. G.; Paix?o, M. W. Org. Lett. 2020, 22, 4266.
[46]
(a) Zhou, Z.; Kong, X.; Liu, T. Chin. J. Org. Chem. 2021, 41, 3844. (in Chinese)
[46]
( 周子杰, 孔祥梅, 刘天飞, 有机化学, 2021, 41, 3844.)
[46]
(b) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546.
[47]
Liu, Y.; Chen, X.-L.; Li, X.-Y.; Zhu, S.-S.; Li, S.-J.; Song, Y.; Qu, L.-B.; Yu, B. J. Am. Chem. Soc. 2021, 143, 964.
[48]
Gore, B. S.; Kuo, C.-Y.; Wang, J.-J. Chem. Commun. 2022, 58, 4087.
[49]
Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Chem. Rev. 2022, 122, 1543.
[50]
(a) Kunkely, H.; Vogler, A. J. Organomet. Chem. 1998, 559, 215.
[50]
(b) Caspar, J. V. J. Am. Chem. Soc. 1985, 107, 6718.
[50]
(c) Harvey, P. D.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 2145.
[50]
(d) Harvey, P. D.; Schaefer, W. P.; Gray, H. B. Inorg. Chem. 1988, 27, 1101.
[50]
(e) Ohkubo, T.; Takao, K.; Tsubomura, T. Inorg. Chem. Commun. 2012, 20, 27.
[50]
(f) Riese, S.; Holzapfel, M.; Schmiedel, A.; Gert, I.; Schmidt, D.; Wurthner, F.; Lambert, C. Inorg. Chem. 2018, 57, 12480.
[51]
Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. J. Am. Chem. Soc. 2016, 138, 6340.
[52]
Jia, X.; Zhang, Z.; Gevorgyan, V. ACS Catal. 2021, 11, 13217.
文章导航

/