研究简报

均苯四甲酸二酰亚胺拓展柱[6]芳烃与羧酸盐客体分子的络合性能研究

  • 程璐 ,
  • 曾飞 ,
  • 王小峰
展开
  • a 南华大学化学化工学院 湖南衡阳 421001
    b 湖南科技学院化学与生物工程学院 湖南永州 425199

收稿日期: 2022-06-13

  修回日期: 2022-07-22

  网络出版日期: 2022-08-18

基金资助

国家自然科学基金(21602055)

Study on the Complexation Properties of Promellitic Diimide- Extended Pillar[6]aren and Carboxylate Guests

  • Lu Cheng ,
  • Fei Zeng ,
  • Xiaofeng Wang
Expand
  • a School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001
    b College of Chemical and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199
* Corresponding authors. E-mail: ;

Received date: 2022-06-13

  Revised date: 2022-07-22

  Online published: 2022-08-18

Supported by

National Natural Science Foundation of China(21602055)

摘要

描述了均苯四甲酸二酰亚胺拓展柱[6]芳烃主体与羧酸盐客体分子在溶液中的络合性质, 表明缺电子的主体分子与富电子的羧酸盐客体分子, 通过分子间的弱相互作用力能够形成1∶2的超分子络合物. 此外, 主客体络合物的形成与解离具有酸碱的环境响应性, 并且该过程也可通过肉眼进行观察.

本文引用格式

程璐 , 曾飞 , 王小峰 . 均苯四甲酸二酰亚胺拓展柱[6]芳烃与羧酸盐客体分子的络合性能研究[J]. 有机化学, 2023 , 43(1) : 352 -356 . DOI: 10.6023/cjoc202206018

Abstract

The complexation between the pyromellitic diimide-extended pillar[6]aren host and carboxylate guests in solution was investigated in detail. It was found that the host could form 1∶2 complexes with carboxylate salts in solution. Interestingly, the complexation and decomplexation of the complexes between the host and the guest could be achieved by changing the pH of the solution, and the process could also be observed by naked eye.

参考文献

[1]
(a) Schrader, T.; Hamilton, A. D. Functional Synthetic Receptors, Wiley-VCH, Weinheim, Germany, 2005.
[1]
(b) Liu, Y.; You, C. C.; Zhang, H. Y. Supramolecular Chemistry, Nankai University Publication, Tianjin, 2001. (in Chinese)
[1]
(刘育, 尤长城, 张衡益, 超分子化学, 南开大学出版社, 天津, 2001.)
[2]
Gloe, K. Macrocyclic Chemistry: Current Trends and Future Perspectives, Springer, Berlin, Germany, 2005.
[3]
(a) Wang, M.-X. Sci. China: Chem. 2018, 61, 993.
[3]
(b) Han, Y.; Meng, Z.; Ma, Y.-X.; Chen, C.-F. Acc. Chem. Res. 2014, 47, 2026.
[3]
(c) Liu, Z.; Nalluri, S. K. M.; Stoddart, J. F. Chem. Soc. Rev. 2017, 46, 2459.
[3]
(d) Wu, J.-R.; Yang, Y.-W. Chem. Commun. 2019, 55, 1533.
[3]
(e) Wu, J.-R.; Yang, Y.-W. Angew. Chem., Int. Ed. 2020, 60, 1690.
[4]
(a) Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.-A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.
[4]
(b) Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H. Angew. Chem., Int. Ed. 2009, 48, 9721.
[4]
(c) Ogoshi, T.; Yamagishi, T. A.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937.
[4]
(d) Kakuta, T.; Yamagishi, T.-A.; Ogoshi, T. Acc. Chem. Res. 2018, 51, 1656.
[4]
(e) Wang, J.-H.; Feng, H. T.; Zheng, Y.-S. Chem. Commun. 2014, 50, 11407.
[5]
Della Sala, P.; Del Regno, R.; Talotta, C.; Capobianco, A.; Hickey, N.; Geremia, S.; De Rosa, M.; Spinella, A.; Soriente, A.; Neri, P.; Gaeta, C. J. Am. Chem. Soc. 2020, 142, 1752.
[6]
(a) Han, X.-N.; Han, Y.; Chen, C.-F. J. Am. Chem. Soc. 2020, 142, 8262.
[6]
(b) Han, X.-N.; Zong, Q.-S.; Han, Y.; Chen, C.-F. CCS Chem. 2022, 4, 318.
[7]
(a) Chen, H.; Fan, J.; Hu, X.; Ma, J.; Wang, S.; Li, J.; Yu, Y.; Jia, X.; Li, C. Chem. Sci. 2015, 6, 197.
[7]
(b) Wang, Y.; Xu, K.; Li, B.; Cui, L.; Li, J.; Jia, X.; Zhao, H.; Fang, J.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 10281.
[7]
(c) Ma, J.; Deng, H.; Ma, S.; Li, J.; Jia, X.; Li, C. Chem. Commun. 2015, 51, 6621.
[8]
(a) Huang, G.-B.; Wang, S.-H.; Ke, H.; Yang, L.-P.; Jiang, W. J. Am. Chem. Soc. 2016, 138, 14550.
[8]
(b) Wang, L.-L.; Chen, Z.; Liu, W.-E.; Ke, H.; Wang, S.-H.; Jiang, W. J. Am. Chem. Soc. 2017, 139, 8436.
[8]
(c) He, Z.; Yang, X.; Jiang, W. Org. Lett. 2015, 17, 3880.
[9]
(a) Guo, Q.-H.; Zhao, L.; Wang, M.-X. Angew. Chem., Int. Ed. 2015, 54, 8386.
[9]
(b) Guo, S.-Y.; Guo, Q.-H.; Tong, S.; Wang, M.-X. Angew. Chem., Int. Ed. 2020, 59, 8078.
[9]
(c) Guo, Q.-H.; Fu, Z.-D.; Zhao, L.; Wang, M.-X. Angew. Chem., Int. Ed. 2014, 53, 13548.
[10]
(a) Shi, Q.; Chen, C.-F. Org. Lett. 2017, 19, 3175.
[10]
(b) Zhang, G.-W.; Li, P.-F.; Meng, Z.; Wang, H.-X.; Han, Y.; Chen, C.-F. Angew. Chem., Int. Ed. 2016, 55, 5304.
[10]
(c) Shi, Q.; Chen, C.-F. Chem. Sci. 2019, 10, 2529.
[11]
(a) Lei, S.-N.; Xiao, H.; Zeng, Y.; Tung, C.-H.; Wu, L.-Z.; Cong, H. Angew. Chem., Int. Ed. 2020, 59, 10059.
[11]
(b) Yang, W.; Samanta, K.; Wan, X.; Thikekar, T. U.; Chao, Y.; Li, S.; Du, K.; Xu, J.; Gao, Y.; Zuilhof, H.; Sue, A. C.-H. Angew. Chem., Int. Ed. 2020, 59, 3994.
[11]
(c) Wang, J. Q.; Han, Y.; Chen, C.-F. Chem. Commun. 2021, 57, 3987.
[11]
(d) Li, J.; Zhou, H.-Y.; Han, Y.; Chen, C.-F. Angew. Chem., Int. Ed. 2021, 60, 21927.
[11]
(e) Wu, J.-R.; Mu, A. U.; Li, B.; Wang, C. Y.; Fang, L.; Yang, Y.-W. Angew. Chem., Int. Ed. 2018, 57, 9853.
[11]
(f) Wu, J.-R.; Yang, Y.-W. CCS Chem. 2020, 2, 836.
[11]
(g) Wu, J.-R.; Yang, Y.-W. J. Am. Chem. Soc. 2019, 141, 12280.
[11]
(h) Wu, J.-R.; Cai, Z.; Wu, G.; Dai, D.; Liu, Y.-Q.; Yang, Y.-W. J. Am. Chem. Soc. 2021, 143, 20395.
[11]
(i) Yang, J.; Yang, Y.-W. Small 2020 16, 2003490.
[11]
(j) Wu, J.-R.; Wu, G.; Li, D.; Dai, D.; Yang, Y.-W. Sci. Adv. 2022, 8, eabo2255.
[12]
Gong, H.-Y.; Rambo, B. M.; Karnas, E.; Lynch, V. M.; Sessler, J. L. Nat. Chem. 2010, 2, 406.
[13]
(a) Gao, B.; Tan, L.-L.; Song, N.; Li, K.; Yang, Y.-W. Chem. Commun. 2016, 52, 5804.
[13]
(b) Wu, J.-R.; Wang, C.-Y.; Tao, Y.-C.; Wang, Y.; Li, C.; Yang, Y.-W. Eur. J. Org. Chem. 2018, 2018, 1321.
[13]
(c) Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J.-R.; Wang, Y.; Zhang, D.; Yang, Y.-W. J. Am. Chem. Soc. 2019, 141, 4756.
[13]
(d) Yang, J.; Dai, D.; Ma, L.; Yang, Y.-W. Chin. Chem. Lett. 2021, 32, 729.
[13]
(e) Dai, D.; Yang, J.; Zou, Y.-C.; Wu, J.-R.; Tan, L. L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y.-W. Angew. Chem., Int. Ed. 2021, 60, 8967.
[14]
Zeng, F.; Chen, L.; Ou, G. C.; Tang, L. L.; Ding, M. H. J. Org. Chem. 2022, 87, 3863.
[15]
http://supramolecular.org./.
文章导航

/