醇与胺的不对称脱氢偶联升级反应研究进展
收稿日期: 2022-07-02
修回日期: 2022-07-29
网络出版日期: 2022-08-18
基金资助
国家重点研发计划(2021YFF0701600); 国家自然科学基金(21871288); 国家自然科学基金(21821002); 国家自然科学基金(22171280); 上海市科委(22XD1424900)
Recent Progress in Upgrading of Alcohol and Amine via Asymmetric Dehydrogenative Coupling
Received date: 2022-07-02
Revised date: 2022-07-29
Online published: 2022-08-18
Supported by
National Key Research and Development Program of China(2021YFF0701600); National Natural Science Foundation of China(21871288); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22171280); Science and Technology Commission of Shanghai Municipality(22XD1424900)
蒋滨阳 , 施世良 . 醇与胺的不对称脱氢偶联升级反应研究进展[J]. 有机化学, 2022 , 42(10) : 3263 -3279 . DOI: 10.6023/cjoc202207002
Chiral alcohol and amine are ubiquitous in natural products and pharmaceutically relevant molecules. Thus, developing the asymmetric synthesis of these molecules is of great importance. Compared with traditional methods, transition-metal-catalyzed asymmetric dehydrogenative coupling of alcohol and amine to advanced chiral alcohol and amine has been widely studied due to its excellent step-, atom- and redox-economy. This method allows for the one-step synthesis of structurally diverse chiral alcohol and chiral amine compounds from simple starting materials. Various types of asymmetric dehydrogenative coupling upgrading reactions involving alcohols and amines according to the types of coupling reagents are summarized and the outlook on the development of the field is provided.
| [1] | (a) Müller, C. E.; Schreiner, P. R. Angew. Chem., Int. Ed. 2011, 50, 6012. |
| [1] | (b) Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 1471. |
| [2] | (a) Fleury-Brégeot, N.; de la Fuente, V.; Castillón, S.; Claver, C. ChemCatChem 2010, 2, 1346. |
| [2] | (b) Cabré, A.; Verdaguer, X.; Riera, A. Chem. Rev. 2022, 122, 269. |
| [2] | (c) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40. |
| [2] | (d) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300. |
| [2] | (e) Malacea, R.; Poli, R.; Manoury, E. Coord. Chem. Rev. 2010, 254, 729. |
| [3] | (a) Liu, Y.-L.; Lin, X.-T. Adv. Synth. Catal. 2019, 361, 876. |
| [3] | (b) Bartlett, S. L.; Johnson, J. S. Acc. Chem. Res. 2017, 50, 2284. |
| [3] | (c) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853. |
| [3] | (d) Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873. |
| [3] | (e) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. |
| [4] | (a) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681. |
| [4] | (b) Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2011, 40, 1937. |
| [4] | (c) Cai, Y.; Li, F.; Li, Y.-Q.; Zhang, W.-B.; Liu, F.; Shi, S.-L. Tetrahedron Lett. 2018, 59, 1073. |
| [4] | (d) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069. |
| [4] | (e) Guillena, G.; Ramón D. J. Hydrogen Transfer Reactions, Springer, Switzerland, 2016. |
| [4] | (f) Kim, S. W.; Zhang, W.; Krische, M. J. Acc. Chem. Res. 2017, 50, 2371. |
| [4] | (g) Santana, C. G.; Krische, M. J. ACS Catal. 2021, 11, 5572. |
| [5] | Nakai, K.; Yoshida, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2014, 136, 7797. |
| [6] | (a) Hassan, A.; Montgomery, T. P.; Krische, M. J. Chem. Commun. 2012, 48, 4692. |
| [6] | (b) Tsutsumi, R.; Hong, S.; Krische, M. J. Chem.-Eur. J. 2015, 21, 12903. |
| [6] | (c) Isbrandt, E. S.; Nasim, A.; Zhao, K.; Newman, S. G. J. Am. Chem. Soc. 2021, 143, 14646. |
| [7] | (a) Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134. |
| [7] | (b) Patman, R. L.; Williams, V. M.; Bower, J. F.; Krische, M. J. Angew. Chem., Int. Ed. 2008, 47, 5220. |
| [7] | (c) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120. |
| [7] | (d) Williams, V. M.; Leung, J. C.; Patman, R. L.; Krische, M. J. Tetrahedron 2009, 65, 5024. |
| [8] | Maekawa, T.; Sekizawa, H.; Itami, K. Angew. Chem., Int. Ed. 2011, 50, 7022. |
| [9] | (a) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. |
| [9] | (b) Kennedy, J. W. J.; Hall, D. G. Angew. Chem., Int. Ed. 2003, 42, 4732. |
| [10] | (a) Kimura, M.; Shimizu, M.; Shibata, K.; Tazoe, M.; Tamaru, Y. Angew. Chem., Int. Ed. 2003, 42, 3392. |
| [10] | (b) Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredici, I.; Vidari, G. Angew. Chem., Int. Ed. 2004, 43, 846. |
| [11] | Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340. |
| [12] | Shu, C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794. |
| [13] | Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891. |
| [14] | (a) Hassan, A.; Townsend, I. A.; Krische, M. J. Chem. Commun. 2011, 47, 10028. |
| [14] | (b) Luo, G.; Xiang, M.; Krische, M. J. Org. Lett. 2019, 21, 2493. |
| [15] | (a) Montgomery, T. P.; Hassan, A.; Park, B. Y.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 11100. |
| [15] | (b) Xiang, M.; Luo, G.; Wang, Y.; Krische, M. J. Chem. Commun. 2019, 55, 981. |
| [15] | (c) Hassan, A.; Zbieg, J. R.; Krische, M. J. Angew. Chem., Int. Ed. 2011, 50, 3493. |
| [16] | Cabrera, J. M.; Krische, M. J. Angew. Chem., Int. Ed. 2019, 58, 10718. |
| [17] | Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2514. |
| [18] | Gao, X.; Zhang, Y. J.; Krische, M. J. Angew. Chem., Int. Ed. 2011, 50, 4173. |
| [19] | Han, S. B.; Gao, X.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 9153. |
| [20] | Zhang, Y. J.; Yang, J. H.; Kim, S. H.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 4562. |
| [21] | Feng, J.; Garza, V. J.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 8911. |
| [22] | Guo, Y.-A.; Lee, W.; Krische, M. J. Chem.-Eur. J. 2017, 23, 2557. |
| [23] | Feng, J.; Noack, F.; Krische, M. J. J. Am. Chem. Soc. 2016, 138, 12364. |
| [24] | Wang, G.; Franke, J.; Ngo, C. Q.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 7915. |
| [25] | Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2017, 60, 1638. |
| [26] | Woo, S. K.; Geary, L. M.; Krische, M. J. Angew. Chem., Int. Ed. 2012, 51, 7830. |
| [27] | Liang, T.; Woo, S. K.; Krische, M. J. Angew. Chem., Int. Ed. 2016, 55, 9207. |
| [28] | Liang, T.; Nguyen, K. D.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 3161. |
| [29] | Gellrich, U.; Meißner, A.; Steffani, A.; Ka? hny, M.; Drexler, H.-J.; |
| [30] | Heller, D.; Plattner, D. A.; Breit, B. J. Am. Chem. Soc. 2014, 136, 1097. |
| [31] | Park, B. Y.; Nguyen, K. D.; Chaulagain, M. R.; Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 11902. |
| [32] | Xiang, M.; Ghosh, A.; Krische, M. J. J. Am. Chem. Soc. 2021, 143, 2838. |
| [33] | Ortiz, E.; Chang, Y.-H.; Shezaf, J. Z.; Shen, W.; Krische, M. J. J. Am. Chem. Soc. 2022, 144, 8861. |
| [34] | Liang, T.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 16024. |
| [35] | Cai, Y.; Zhang, J.-W.; Li, F.; Liu, J.-M.; Shi, S.-L. ACS Catal. 2019, 9, 1. |
| [36] | Ho, C.-Y.; Jamison, T. F. Angew. Chem., Int. Ed. 2007, 46, 782. |
| [37] | Zbieg, J. R.; Moran, J.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 10582. |
| [38] | Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. Science 2012, 336, 324. |
| [39] | McInturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 20628. |
| [40] | Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 6916. |
| [41] | Spielmann, K.; Xiang, M.; Schwartz, L. A.; Krische, M. J. J. Am. Chem. Soc. 2019, 141, 14136. |
| [42] | Xiang, M.; Pfaffinger, D. E.; Ortiz, E.; Brito, G. A.; Krische, M. J. J. Am. Chem. Soc. 2021, 143, 8849. |
| [43] | Geary, L. M.; Woo, S. K.; Leung, J. C.; Krische, M. J. Angew. Chem., Int. Ed. 2012, 51, 2972. |
| [44] | Nguyen, K. D.; Herkommer, D.; Krische, M. J. J. Am. Chem. Soc. 2016, 138, 5238. |
| [45] | (a) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722. |
| [45] | (b) Fyfe, J. W. B.; Watson, A. J. B. Chem 2017, 3, 31. |
| [46] | (a) Duan, H.-F.; Xie, J.-H.; Shi, W.-J.; Zhang, Q.; Zhou, Q.-L. Org. Lett. 2006, 1479. |
| [46] | (b) Tomita, D.; Kanai, M.; Shibasaki, M. Chem.-Asian. J. 2006, 1, 161. |
| [46] | (c) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 4351. |
| [46] | (d) Li, R.; Luo, K.; Hu, Y.; Tang, W. Adv. Synth. Catal. 2013, 355, 1297. |
| [46] | (e) Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45, 3353. |
| [47] | Casnati, A.; Lichosyt, D.; Lainer, B.; Veth, L.; Dydio, P. Org. Lett. 2021, 23, 3502. |
| [48] | Cai, Y.; Shi, S.-L. J. Am. Chem. Soc. 2021, 143, 11963. |
| [49] | (a) Cai, Y.; Ruan, L.-X.; Rahman, A.; Shi, S.-L. Angew. Chem., Int. Ed. 2021, 60, 5262. |
| [49] | (b) Cai, Y.; Yang, X.-T.; Zhang, S.-Q.; Li, F.; Li, Y.-Q.; Ruan, L.-X.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2018, 57, 1376. |
| [49] | (c) Zhang, W.-B.; Yang, X.-T.; Ma, J.-B.; Su, Z.-M.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 5628. |
| [49] | (d) Cai, Y.; Ye, X.; Liu, S.; Shi, S.-L. Angew. Chem., Int. Ed. 2019, 58, 13433. |
| [49] | (e) Shen, D.; Zhang, W.-B.; Li, Z.; Shi, S.-L.; Xu, Y. Adv. Synth. Catal. 2020, 362, 112. |
| [49] | (f) Li, Y.-Q.; Li, F.; Shi, S.-L. Chin. J. Chem. 2020, 38, 1035. |
| [49] | (g) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2022, 4, 1169. |
| [49] | (h) Ma, J.-B.; Zhao, X.; Zhang, D.; Shi, S.-L. J. Am. Chem. Soc. 2022, 144, 13643. |
| [50] | Moran, J.; Smith, A. G.; Carris, R. M.; Johnson, J. S.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 18618. |
| [51] | Ambler, B. R.; Turnbull, B. W. H.; Suravarapu, S. R.; Uteuliyev, M. M.; Huynh, N. O.; Krische, M. J. J. Am. Chem. Soc. 2018, 140, 9091. |
| [52] | Bender, M.; Turnbull, B. W. H.; Ambler, B. R.; Krische, M. J. Science 2017, 357, 779. |
| [53] | Wang, K.; Zhang, L.; Tang, W.; Sun, H.; Xue, D.; Lei, M.; Xiao, J.; Wang, C. Angew. Chem., Int. Ed. 2020, 59, 11408. |
| [54] | Ng, T. W.; Liao, G.; Lau, K. K.; Pan, H.-J.; Zhao, Y. Angew. Chem., Int. Ed. 2020, 59, 11384. |
| [55] | (a) Xu, R.; Wang, K.; Liu, H.; Tang, W.; Sun, H.; Xue, D.; Xiao, J.; Wang, C. Angew. Chem., Int. Ed. 2020, 59, 21959. |
| [55] | (b) Zhang, X.; Ma, W.; Zhang, J.; Tang, W.; Xue, D.; Xiao, J.; Sun, H.; Wang, C. Angew. Chem., Int. Ed. 2022, 61, e202203244. |
| [55] | (c) Li, F.; Long, L.; He, Y.-M.; Li, Z.; Chen, H.; Fan, Q. H. Angew. Chem., Int. Ed. 2022, 61, e202202972. |
| [56] | Pan, S.; Endo, K.; Shibata, T. Org. Lett. 2011, 13, 4692. |
| [57] | Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nat. Chem. 2017, 9, 140. |
| [58] | Bergonzini, G.; Schindler, C. S.; Wallentin, C.-J.; Jacobsen, E. N.; Stephenson, C. R. J. Chem. Sci. 2014, 5, 112. |
| [59] | (a) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 6690. |
| [59] | (b) Kubiak, R.; Prochnow, I.; Doye, S. Angew. Chem., Int. Ed. 2009, 48, 1153. |
| [59] | (c) Reznichenko, A. L.; Hultzsch, K. C. J. Am. Chem. Soc. 2012, 134, 3300. |
| [59] | (d) Koperniku, A.; Foth, P. J.; Sammis, G. M.; Schafer, L. L. J. Am. Chem. Soc. 2019, 141, 18944. |
| [59] | (e) Bahena, E. N.; Griffin, S. E.; Schafer, L. L. J. Am. Chem. Soc. 2020, 142, 20566. |
| [59] | (f) Yao, W.-W.; Li, R.; Chen, H.; Chen, M.-K.; Luan, Y.-X.; Wang, Y.; Yu, Z.-X.; Ye, M. Nat. Commun. 2021, 12, 3800. |
| [60] | Eisenberger, P.; Ayinla, R. O.; Lauzon, J. M. P.; Schafer, L. L. Angew. Chem., Int. Ed. 2009, 48, 8361. |
| [61] | Li, Y.; Liu, Y.-C.; Shi, H. J. Am. Chem. Soc. 2021, 143, 4154. |
| [62] | Yan, X.-B.; Li, Y.; Wu, W.-Q.; Xu, L.; Li, K.; Liu, Y.-C.; Shi, H. Nat. Commun. 2021, 12, 5881. |
/
| 〈 |
|
〉 |