综述与进展

醇与胺的不对称脱氢偶联升级反应研究进展

  • 蒋滨阳 ,
  • 施世良
展开
  • 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032

收稿日期: 2022-07-02

  修回日期: 2022-07-29

  网络出版日期: 2022-08-18

基金资助

国家重点研发计划(2021YFF0701600); 国家自然科学基金(21871288); 国家自然科学基金(21821002); 国家自然科学基金(22171280); 上海市科委(22XD1424900)

Recent Progress in Upgrading of Alcohol and Amine via Asymmetric Dehydrogenative Coupling

  • Binyang Jiang ,
  • Shi-Liang Shi
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
* Corresponding author. E-mail:

Received date: 2022-07-02

  Revised date: 2022-07-29

  Online published: 2022-08-18

Supported by

National Key Research and Development Program of China(2021YFF0701600); National Natural Science Foundation of China(21871288); National Natural Science Foundation of China(21821002); National Natural Science Foundation of China(22171280); Science and Technology Commission of Shanghai Municipality(22XD1424900)

摘要

手性醇及手性胺结构广泛存在于天然产物及药物分子中, 因而发展其不对称合成具有重要研究意义. 相较于传统方法, 过渡金属催化的醇与胺的不对称脱氢偶联制备高级手性醇和胺的反应具有优秀的步骤经济性、原子经济性及氧化还原经济性, 因而近年来得到了广泛的研究. 这类反应可从简单原料出发一步合成结构多样的手性醇与手性胺类化合物. 根据偶联试剂的种类进行划分, 总结了醇、胺参与的各类不对称脱氢偶联升级反应, 并对该领域的发展进行展望.

本文引用格式

蒋滨阳 , 施世良 . 醇与胺的不对称脱氢偶联升级反应研究进展[J]. 有机化学, 2022 , 42(10) : 3263 -3279 . DOI: 10.6023/cjoc202207002

Abstract

Chiral alcohol and amine are ubiquitous in natural products and pharmaceutically relevant molecules. Thus, developing the asymmetric synthesis of these molecules is of great importance. Compared with traditional methods, transition-metal-catalyzed asymmetric dehydrogenative coupling of alcohol and amine to advanced chiral alcohol and amine has been widely studied due to its excellent step-, atom- and redox-economy. This method allows for the one-step synthesis of structurally diverse chiral alcohol and chiral amine compounds from simple starting materials. Various types of asymmetric dehydrogenative coupling upgrading reactions involving alcohols and amines according to the types of coupling reagents are summarized and the outlook on the development of the field is provided.

参考文献

[1]
(a) Müller, C. E.; Schreiner, P. R. Angew. Chem., Int. Ed. 2011, 50, 6012.
[1]
(b) Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 1471.
[2]
(a) Fleury-Brégeot, N.; de la Fuente, V.; Castillón, S.; Claver, C. ChemCatChem 2010, 2, 1346.
[2]
(b) Cabré, A.; Verdaguer, X.; Riera, A. Chem. Rev. 2022, 122, 269.
[2]
(c) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
[2]
(d) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
[2]
(e) Malacea, R.; Poli, R.; Manoury, E. Coord. Chem. Rev. 2010, 254, 729.
[3]
(a) Liu, Y.-L.; Lin, X.-T. Adv. Synth. Catal. 2019, 361, 876.
[3]
(b) Bartlett, S. L.; Johnson, J. S. Acc. Chem. Res. 2017, 50, 2284.
[3]
(c) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
[3]
(d) Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873.
[3]
(e) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
[4]
(a) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
[4]
(b) Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2011, 40, 1937.
[4]
(c) Cai, Y.; Li, F.; Li, Y.-Q.; Zhang, W.-B.; Liu, F.; Shi, S.-L. Tetrahedron Lett. 2018, 59, 1073.
[4]
(d) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069.
[4]
(e) Guillena, G.; Ramón D. J. Hydrogen Transfer Reactions, Springer, Switzerland, 2016.
[4]
(f) Kim, S. W.; Zhang, W.; Krische, M. J. Acc. Chem. Res. 2017, 50, 2371.
[4]
(g) Santana, C. G.; Krische, M. J. ACS Catal. 2021, 11, 5572.
[5]
Nakai, K.; Yoshida, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2014, 136, 7797.
[6]
(a) Hassan, A.; Montgomery, T. P.; Krische, M. J. Chem. Commun. 2012, 48, 4692.
[6]
(b) Tsutsumi, R.; Hong, S.; Krische, M. J. Chem.-Eur. J. 2015, 21, 12903.
[6]
(c) Isbrandt, E. S.; Nasim, A.; Zhao, K.; Newman, S. G. J. Am. Chem. Soc. 2021, 143, 14646.
[7]
(a) Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134.
[7]
(b) Patman, R. L.; Williams, V. M.; Bower, J. F.; Krische, M. J. Angew. Chem., Int. Ed. 2008, 47, 5220.
[7]
(c) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120.
[7]
(d) Williams, V. M.; Leung, J. C.; Patman, R. L.; Krische, M. J. Tetrahedron 2009, 65, 5024.
[8]
Maekawa, T.; Sekizawa, H.; Itami, K. Angew. Chem., Int. Ed. 2011, 50, 7022.
[9]
(a) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763.
[9]
(b) Kennedy, J. W. J.; Hall, D. G. Angew. Chem., Int. Ed. 2003, 42, 4732.
[10]
(a) Kimura, M.; Shimizu, M.; Shibata, K.; Tazoe, M.; Tamaru, Y. Angew. Chem., Int. Ed. 2003, 42, 3392.
[10]
(b) Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredici, I.; Vidari, G. Angew. Chem., Int. Ed. 2004, 43, 846.
[11]
Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340.
[12]
Shu, C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794.
[13]
Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891.
[14]
(a) Hassan, A.; Townsend, I. A.; Krische, M. J. Chem. Commun. 2011, 47, 10028.
[14]
(b) Luo, G.; Xiang, M.; Krische, M. J. Org. Lett. 2019, 21, 2493.
[15]
(a) Montgomery, T. P.; Hassan, A.; Park, B. Y.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 11100.
[15]
(b) Xiang, M.; Luo, G.; Wang, Y.; Krische, M. J. Chem. Commun. 2019, 55, 981.
[15]
(c) Hassan, A.; Zbieg, J. R.; Krische, M. J. Angew. Chem., Int. Ed. 2011, 50, 3493.
[16]
Cabrera, J. M.; Krische, M. J. Angew. Chem., Int. Ed. 2019, 58, 10718.
[17]
Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2514.
[18]
Gao, X.; Zhang, Y. J.; Krische, M. J. Angew. Chem., Int. Ed. 2011, 50, 4173.
[19]
Han, S. B.; Gao, X.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 9153.
[20]
Zhang, Y. J.; Yang, J. H.; Kim, S. H.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 4562.
[21]
Feng, J.; Garza, V. J.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 8911.
[22]
Guo, Y.-A.; Lee, W.; Krische, M. J. Chem.-Eur. J. 2017, 23, 2557.
[23]
Feng, J.; Noack, F.; Krische, M. J. J. Am. Chem. Soc. 2016, 138, 12364.
[24]
Wang, G.; Franke, J.; Ngo, C. Q.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 7915.
[25]
Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2017, 60, 1638.
[26]
Woo, S. K.; Geary, L. M.; Krische, M. J. Angew. Chem., Int. Ed. 2012, 51, 7830.
[27]
Liang, T.; Woo, S. K.; Krische, M. J. Angew. Chem., Int. Ed. 2016, 55, 9207.
[28]
Liang, T.; Nguyen, K. D.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 3161.
[29]
Gellrich, U.; Meißner, A.; Steffani, A.; Ka? hny, M.; Drexler, H.-J.;
[30]
Heller, D.; Plattner, D. A.; Breit, B. J. Am. Chem. Soc. 2014, 136, 1097.
[31]
Park, B. Y.; Nguyen, K. D.; Chaulagain, M. R.; Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 11902.
[32]
Xiang, M.; Ghosh, A.; Krische, M. J. J. Am. Chem. Soc. 2021, 143, 2838.
[33]
Ortiz, E.; Chang, Y.-H.; Shezaf, J. Z.; Shen, W.; Krische, M. J. J. Am. Chem. Soc. 2022, 144, 8861.
[34]
Liang, T.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 16024.
[35]
Cai, Y.; Zhang, J.-W.; Li, F.; Liu, J.-M.; Shi, S.-L. ACS Catal. 2019, 9, 1.
[36]
Ho, C.-Y.; Jamison, T. F. Angew. Chem., Int. Ed. 2007, 46, 782.
[37]
Zbieg, J. R.; Moran, J.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 10582.
[38]
Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. Science 2012, 336, 324.
[39]
McInturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 20628.
[40]
Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 6916.
[41]
Spielmann, K.; Xiang, M.; Schwartz, L. A.; Krische, M. J. J. Am. Chem. Soc. 2019, 141, 14136.
[42]
Xiang, M.; Pfaffinger, D. E.; Ortiz, E.; Brito, G. A.; Krische, M. J. J. Am. Chem. Soc. 2021, 143, 8849.
[43]
Geary, L. M.; Woo, S. K.; Leung, J. C.; Krische, M. J. Angew. Chem., Int. Ed. 2012, 51, 2972.
[44]
Nguyen, K. D.; Herkommer, D.; Krische, M. J. J. Am. Chem. Soc. 2016, 138, 5238.
[45]
(a) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
[45]
(b) Fyfe, J. W. B.; Watson, A. J. B. Chem 2017, 3, 31.
[46]
(a) Duan, H.-F.; Xie, J.-H.; Shi, W.-J.; Zhang, Q.; Zhou, Q.-L. Org. Lett. 2006, 1479.
[46]
(b) Tomita, D.; Kanai, M.; Shibasaki, M. Chem.-Asian. J. 2006, 1, 161.
[46]
(c) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 4351.
[46]
(d) Li, R.; Luo, K.; Hu, Y.; Tang, W. Adv. Synth. Catal. 2013, 355, 1297.
[46]
(e) Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45, 3353.
[47]
Casnati, A.; Lichosyt, D.; Lainer, B.; Veth, L.; Dydio, P. Org. Lett. 2021, 23, 3502.
[48]
Cai, Y.; Shi, S.-L. J. Am. Chem. Soc. 2021, 143, 11963.
[49]
(a) Cai, Y.; Ruan, L.-X.; Rahman, A.; Shi, S.-L. Angew. Chem., Int. Ed. 2021, 60, 5262.
[49]
(b) Cai, Y.; Yang, X.-T.; Zhang, S.-Q.; Li, F.; Li, Y.-Q.; Ruan, L.-X.; Hong, X.; Shi, S.-L. Angew. Chem., Int. Ed. 2018, 57, 1376.
[49]
(c) Zhang, W.-B.; Yang, X.-T.; Ma, J.-B.; Su, Z.-M.; Shi, S.-L. J. Am. Chem. Soc. 2019, 141, 5628.
[49]
(d) Cai, Y.; Ye, X.; Liu, S.; Shi, S.-L. Angew. Chem., Int. Ed. 2019, 58, 13433.
[49]
(e) Shen, D.; Zhang, W.-B.; Li, Z.; Shi, S.-L.; Xu, Y. Adv. Synth. Catal. 2020, 362, 112.
[49]
(f) Li, Y.-Q.; Li, F.; Shi, S.-L. Chin. J. Chem. 2020, 38, 1035.
[49]
(g) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2022, 4, 1169.
[49]
(h) Ma, J.-B.; Zhao, X.; Zhang, D.; Shi, S.-L. J. Am. Chem. Soc. 2022, 144, 13643.
[50]
Moran, J.; Smith, A. G.; Carris, R. M.; Johnson, J. S.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 18618.
[51]
Ambler, B. R.; Turnbull, B. W. H.; Suravarapu, S. R.; Uteuliyev, M. M.; Huynh, N. O.; Krische, M. J. J. Am. Chem. Soc. 2018, 140, 9091.
[52]
Bender, M.; Turnbull, B. W. H.; Ambler, B. R.; Krische, M. J. Science 2017, 357, 779.
[53]
Wang, K.; Zhang, L.; Tang, W.; Sun, H.; Xue, D.; Lei, M.; Xiao, J.; Wang, C. Angew. Chem., Int. Ed. 2020, 59, 11408.
[54]
Ng, T. W.; Liao, G.; Lau, K. K.; Pan, H.-J.; Zhao, Y. Angew. Chem., Int. Ed. 2020, 59, 11384.
[55]
(a) Xu, R.; Wang, K.; Liu, H.; Tang, W.; Sun, H.; Xue, D.; Xiao, J.; Wang, C. Angew. Chem., Int. Ed. 2020, 59, 21959.
[55]
(b) Zhang, X.; Ma, W.; Zhang, J.; Tang, W.; Xue, D.; Xiao, J.; Sun, H.; Wang, C. Angew. Chem., Int. Ed. 2022, 61, e202203244.
[55]
(c) Li, F.; Long, L.; He, Y.-M.; Li, Z.; Chen, H.; Fan, Q. H. Angew. Chem., Int. Ed. 2022, 61, e202202972.
[56]
Pan, S.; Endo, K.; Shibata, T. Org. Lett. 2011, 13, 4692.
[57]
Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nat. Chem. 2017, 9, 140.
[58]
Bergonzini, G.; Schindler, C. S.; Wallentin, C.-J.; Jacobsen, E. N.; Stephenson, C. R. J. Chem. Sci. 2014, 5, 112.
[59]
(a) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 6690.
[59]
(b) Kubiak, R.; Prochnow, I.; Doye, S. Angew. Chem., Int. Ed. 2009, 48, 1153.
[59]
(c) Reznichenko, A. L.; Hultzsch, K. C. J. Am. Chem. Soc. 2012, 134, 3300.
[59]
(d) Koperniku, A.; Foth, P. J.; Sammis, G. M.; Schafer, L. L. J. Am. Chem. Soc. 2019, 141, 18944.
[59]
(e) Bahena, E. N.; Griffin, S. E.; Schafer, L. L. J. Am. Chem. Soc. 2020, 142, 20566.
[59]
(f) Yao, W.-W.; Li, R.; Chen, H.; Chen, M.-K.; Luan, Y.-X.; Wang, Y.; Yu, Z.-X.; Ye, M. Nat. Commun. 2021, 12, 3800.
[60]
Eisenberger, P.; Ayinla, R. O.; Lauzon, J. M. P.; Schafer, L. L. Angew. Chem., Int. Ed. 2009, 48, 8361.
[61]
Li, Y.; Liu, Y.-C.; Shi, H. J. Am. Chem. Soc. 2021, 143, 4154.
[62]
Yan, X.-B.; Li, Y.; Wu, W.-Q.; Xu, L.; Li, K.; Liu, Y.-C.; Shi, H. Nat. Commun. 2021, 12, 5881.
文章导航

/