可见光促进N-氟代酰胺的1,5-氢迁移和自由基偶联反应合成联苄基衍生物
收稿日期: 2022-06-30
修回日期: 2022-07-30
网络出版日期: 2022-08-25
基金资助
国家自然科学基金(21602144); 四川省科技计划(2021ZYD0064); 及湖北省教育厅科研计划(Q20211503)
Synthesis of Bibenzyl Derivatives via Visible-Light-Promoted 1,5-Hydrogen Atom Transfer/Radical Coupling Reactions of N-Fluorocarboxamides
Received date: 2022-06-30
Revised date: 2022-07-30
Online published: 2022-08-25
Supported by
National Natural Science Foundation of China(21602144); Science and Technology Program of Sichuan Province(2021ZYD0064); Scientific Research Project of Education Department of Hubei Province(Q20211503)
雷盼盼 , 陈沁琳 , 陈航 , 周洋 , 敬林海 , 汪伟 , 陈芬儿 . 可见光促进N-氟代酰胺的1,5-氢迁移和自由基偶联反应合成联苄基衍生物[J]. 有机化学, 2023 , 43(1) : 254 -264 . DOI: 10.6023/cjoc202206057
Visible light-mediated 1,5-hydrogen atom transfer and radical coupling reactions have been accomplished using N-fluoro-substituted benzamides. This method exhibits a broad substrate scope and high functional group tolerance, giving the corresponding bibenzyl products with generally good yields. Furthermore, this strategy could also be used to N-fluoro-substi- tuted aliphatic amides.
| [1] | (a) Chen, Y.; Yu, H.; Lian, X. Trop. J. Pharm. Res. 2015, 14, 2055. |
| [1] | (b) Zhang, Z.; Zhang, D.; Dou, M.; Li, Z.; Zhang, J.; Zhao, X. Biomed. Pharmacother. 2016, 84, 1350. |
| [1] | (c) Teixeira da Silva, J. A.; Ng, T. B. Appl. Microbiol. Biotechnol. 2017, 101, 2227. |
| [1] | (d) Li, X.-W.; Chen, H.-P.; He, Y.-Y.; Chen, W.-L.; Chen, J.-W.; Gao, L.; Hu, H.-Y.; Wang, J. Molecules 2018, 23, 3245. |
| [2] | (a) Majumder, P. L.; Guha, S.; Sen, S. Phytochemistry 1999, 52, 1365. |
| [2] | (b) Choonong, R.; Sermpradit, W.; Kitisripanya, T.; Sritularak, B.; Putalun, W. ScienceAsia 2019, 45, 245. |
| [3] | Zhang, C.; Liu, S.-J.; Yang, L.; Yuan, M.-Y.; Li, J.-Y.; Hou, B.; Li, H.-M.; Yang, X.-Z.; Ding, C.-C.; Hu, J.-M. Fitoterapia 2017, 122, 76. |
| [4] | (a) Busaranon, K.; Plaimee, P.; Sritularak, B.; Chanvorachote, P. J. Nat. Med. 2016, 70, 18. |
| [4] | (b) Zhang, L.; Fang, Y.; Xu, X. F.; Jin, D. Y. Mol. Med. Rep. 2017, 15, 1195. |
| [4] | (c) Guan, L.; Zhou, J.; Lin, Q.; Zhu, H.; Liu, W.; Liu, B.; Zhang, Y.; Zhang, J.; Gao, J.; Feng, F.; Qu, W. Bioorg. Med. Chem. 2019, 27, 2657. |
| [4] | (d) Zhang, Y.; Zhang, Q.; Wei, F.; Liu, N. OncoTargets Ther. 2019, 12, 5457. |
| [4] | (e) He, L.; Su, Q.; Bai, L.; Li, M.; Liu, J.; Liu, X.; Zhang, C.; Jiang, Z.; He, J.; Shi, J.; Huang, S.; Guo, L. Eur. J. Med. Chem. 2020, 204, 112530. |
| [5] | Kao, T.-I.; Chen, P.-J.; Wang, Y.-H.; Tseng, H.-H.; Chang, S.-H.; Wu, T.-S.; Yang, S.-H.; Lee, Y.-T.; Hwang, T.-L. Br. J. Pharmacol. 2021, 178, 4069. |
| [6] | Cuc, N. T.; Yen, D. T. H.; Yen, P. H.; Hang, D. T. T.; Tai, B. H.; Seo, Y.; Namkung, W.; Kim, S. H.; Cuong, P. V.; Kiem, P. V.; Nhiem, N. X.; Ngoc, T. M. Nat. Prod. Res. 2021, 1. |
| [7] | Hitt, D. M.; Zwicker, J. D.; Chao, C.-K.; Patel, S. A.; Gerdes, J. M.; Bridges, R. J.; Thompson, C. M. Neurochem. Res. 2021, 46, 494. |
| [8] | Sun, M.; Ma, X.; Shao, S.; Jiang, J.; Li, J.; Tian, J.; Zhang, J.; Li, L.; Ye, F.; Li, S. Org. Biomol. Chem. 2022, 20, 4736. |
| [9] | Wang, J.; Tsuchiya, M.; Tateno, T.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1992, 21, 563. |
| [10] | Wang, J.; Tsuchiya, M.; Tokumaru, K.; Sakuragi, H. Bull. Chem. Soc. Jpn. 1995, 68, 1213. |
| [11] | Chai, C. L. L.; Christen, D.; Halton, B.; Neidlein, R.; Starr, M. A. E. Aust. J. Chem. 1995, 48, 577. |
| [12] | Blangetti, M.; Fleming, P.; O’Shea, D. F. J. Org. Chem. 2012, 77, 2870. |
| [13] | (a) Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc. 1955, 77, 3134. |
| [13] | (b) Inaba, S.-I.; Matsumoto, H.; Rieke, R. D. Tetrahedron Lett. 1982, 23, 4215. |
| [13] | (c) Ginah, F. O.; Donovan, T. A.; Suchan, S. D.; Pfennig, D. R.; Ebert, G. W. J. Org. Chem. 1990, 55, 584. |
| [13] | (d) Aitken, R. A.; Hodgson, P. K. G.; Morrison, J. J.; Oyewale, A. O. J. Chem. Soc., Perkin Trans. 1 2002, 402. |
| [14] | Sato, K.; Inoue, Y.; Mori, T.; Sakaue, A.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. Org. Lett. 2014, 16, 3756. |
| [15] | Ping, K.; Alam, M.; Kahnert, S. R.; Bhadoria, R.; Mere, A.; Mikli, V.; K??rik, M.; Aruv?li, J.; Paiste, P.; Kikas, A.; Kisand, V.; J?rving, I.; Leis, J.; Kongi, N.; Starkov, P. Mater. Adv. 2021, 2, 4009. |
| [16] | (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. |
| [16] | (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 53223. |
| [16] | (c) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874. |
| [16] | (d) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. |
| [16] | (e) Xiao, J.-D.; Li, D.-D.; Jiang, H.-L. Sci. Sin.: Chim. 2018, 48, 1058. |
| [16] | (f) Chen, Y.-Y.; Lu, L.-Q.; Yu, D.-G.; Xiao, W.-J. Sci. China: Chem. 2019, 62, 24. |
| [16] | (g) Cai, B. G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337. |
| [16] | (h) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066. |
| [16] | (i) Xuan, J.; He, X.-K.; Xiao, W.-J. Chem. Soc. Rev. 2020, 49, 2546. |
| [16] | (j) Sun, G. P.; Zuo, M. Z.; Qian, W. R.; Jiao, J. M.: Hu, X. Y.; Wang, L. Y. Green Synth. Catal. 2021, 2, 32. |
| [17] | (a) Majetich, G.; Wheless, K. Tetrahedron 1995, 51, 7095. |
| [17] | (b) Xiong, N.; Li, Y.; Zeng, R. Org. Lett. 2021, 23, 8968. |
| [17] | (c) Zhong, L.-J.; Xiong, Z.-Q.; Ouyang, X.-H.; Li, Y.; Song, R.-J.; Sun, Q.; Li, J.-H. J. Am. Chem. Soc. 2022, 144, 339. |
| [17] | (d) Yu, M.-M.; Gao, Y.-H.; Zhang, L.; Zhang, Y.-J.; Yi, H.; Huang, Z.-L.; Lei, A.-W. Green Chem. 2022, 24, 1445-1450. |
| [18] | (a) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268. |
| [18] | (b) Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272. |
| [18] | (c) Li, Z.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 13288. |
| [18] | (d) Na, C. G.; Alexanian, E. J. Angew. Chem., Int. Ed. 2018, 57, 13106. |
| [18] | (e) Ayer, S. K.; Roizen, J. L. J. Org. Chem. 2019, 84, 3508. |
| [18] | (f) Thullen, S. M.; Treacy, S. M.; Rovis, T. J. Am. Chem. Soc. 2019, 141, 14062. |
| [18] | (g) Song, L.; Fu, D.-M.; Chen, L.; Jiang, Y.-X.; Ye, J.-H.; Zhu, L.; Lan, Y.; Fu, Q.; Yu, D.-G. Angew. Chem., Int. Ed. 2020, 59, 21121. |
| [18] | (h) Wang, L.; Xia, Y.; Derdau, V.; Studer, A. Angew. Chem., Int. Ed. 2021, 60, 18645. |
| [18] | (i) Guo, W.; Wang, Q.; Zhu, J. Chem. Soc. Rev. 2021, 50, 7359. |
| [19] | (a) Man, Y.-Q.; Liu, S.-W.; Xu, B.; Zeng, X.-J. Org. Lett. 2022, 24, 944. |
| [19] | (b) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925. |
| [19] | (c) Murray, P. R. D.; Cox, J. H.; Chiappini, N. D.; Roos, C. B.; McLoughlin, E. A.; Hejna, B. G.; Nguyen, S. T.; Ripberger, H. H.; Ganley, J. M.; Tsui, E.; Shin, N. Y.; Koronkiewicz, B.; Qiu, G.; Knowles, R. R. Chem. Rev. 2022, 122, 2017. |
| [20] | Cera, G.; Haven, T.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 1484. |
| [21] | (a) Groendyke, B. J.; AbuSalim, D. I.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 12771. |
| [21] | (b) Guo, Q.-P.; Peng, Q.; Chai, H.-L.; Huo, Y.-M.; Wang, S.; Xu, Z.-Q. Nat. Commun. 2020, 11, 1463. |
| [22] | Zhao, Y.-N.; Luo, Y.-C.; Wang, Z.-Y.; Xu, P.-F. Chem. Commun. 2018, 54, 3993. |
/
| 〈 |
|
〉 |