综述与进展

过渡金属催化氧/氮杂环丙烷不对称开环反应的研究进展

  • 杜青锋 ,
  • 张璐 ,
  • 高峰 ,
  • 王乐 ,
  • 张万斌
展开
  • a 上海工程技术大学化学化工学院 上海 201620
    b 上海交通大学化学化工学院 变革性分子前沿科学中心 上海市手性药物分子工程重点实验室 上海 200240
†共同第一作者.

收稿日期: 2022-07-26

  修回日期: 2022-08-18

  网络出版日期: 2022-09-02

基金资助

国家自然科学基金(21991112)

Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Epoxides and Aziridines

  • Qingfeng Du ,
  • Lu Zhang ,
  • Feng Gao ,
  • Le Wang ,
  • Wanbin Zhang
Expand
  • a School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620
    b Shanghai Key Laboratory for Molecular Engineering and Chiral Drugs, Frontiers Science Center for Transformative Molecules Shanghai, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240
†These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2022-07-26

  Revised date: 2022-08-18

  Online published: 2022-09-02

Supported by

National Natural Science Foundation of China(21991112)

摘要

氧/氮杂环丙烷是一类重要的三元杂环结构, 由于三元环环张力较大, 因此具有较高的反应活性. 过渡金属催化下氧/氮杂环丙烷的不对称开环反应是一种高效构建含氧、氮杂原子手性分子的策略. 通过该策略可以构筑一系列手性醇、胺及相应杂环化合物. 综述了近二十年来过渡金属催化氧/氮杂环丙烷的不对称开环反应研究进展, 重点讨论了过渡金属催化剂、亲核试剂和配体的类型等因素对不对称开环反应的影响, 探讨了其反应机制及其在有机合成化学中的应用, 并对该领域的发展方向进行了展望.

本文引用格式

杜青锋 , 张璐 , 高峰 , 王乐 , 张万斌 . 过渡金属催化氧/氮杂环丙烷不对称开环反应的研究进展[J]. 有机化学, 2022 , 42(10) : 3240 -3262 . DOI: 10.6023/cjoc202207034

Abstract

Epoxides and aziridines are important three-membered cyclic compounds, which exhibit high reactivity due to their strong strain in molecules. The asymmetric ring-opening reactions of epoxides and aziridines catalyzed by transition metals are efficient strategies for the construction of chiral molecules containing O/N atoms. In this way, a series of chiral alcohols, chiral amines and chiral heterocycles can be constructed. The recent progress in transition metal-catalyzed asymmetric ring-opening reactions of epoxides and aziridines in the past two decades is reviewed with emphasis on the influence of the kinds of transition metal catalysts, nucleophiles, and ligands. Furthermore, the possible reaction mechanisms and applications for the asymmetric ring-opening reactions are discussed, and the future development in this field is also prospected.

参考文献

[1]
(a) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. Rev. 2003, 103, 2985.
[1]
(b) Das, P.; Delost, M. D.; Qureshi, M. H.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2019, 62, 4265.
[2]
https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/Top%20200%20Pharmaceuticals%202021V2.pdf
[3]
(a) Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881.
[3]
(b) Alfonzo, E.; Mendoza, J. W. L.; Beeler, A. B. Beilstein J. Org. Chem. 2018, 14, 2308.
[4]
(a) Ohno, H. Chem. Rev. 2014, 114, 7784.
[4]
(b) He, J.; Ling, J.; Chiu, P. Chem. Rev. 2014, 114, 8037.
[4]
(c) Da Silva, A. R.; Dos Santos, D. A.; Paixão, M. W.; Paixão, A. G. Molecules 2019, 24, 630.
[4]
(d) Huang, C.-Y.; Doyle, A. G. Chem. Rev. 2014, 114, 8153.
[5]
(a) Bhat, V.; Welin, E. R.; Guo, X.; Stoltz, B. M. Chem. Rev. 2017, 117, 4528.
[5]
(b) Feng, J.; Holmes, M.; Krische, M. J. Chem. Rev. 2017, 117, 12564.
[5]
(c) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
[6]
(a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
[6]
(b) Wu, L.; Wei, H.; Shen, J.; Chen, J.; Zhang, W. Acta Chim. Sinica 2021, 79, 1331. (in Chinese).
[6]
(吴良, 魏瀚林, 申杰峰, 陈建中, 张万斌, 化学学报, 2021, 79, 1331.)
[7]
(a) Trost, B. M.; Bunt, R. C.; Lemoine, R. C.; Calkins, T. L. J. Am. Chem. Soc. 2000, 122, 5968.
[7]
(b) Trost, B. M.; Jiang, C. J. Am. Chem. Soc. 2001, 123, 12907.
[7]
(c) Trost, B. M.; Horne, D. B.; Woltering, M. J. Angew. Chem., Int. Ed. 2003, 42, 5987.
[7]
(d) Trost, B. M.; Fandrick, D. R. J. Am. Chem. Soc. 2003, 125, 11836.
[8]
Oguni, N.; Miyagi, Y.; Itoh, K. Tetrahedron Lett. 1998, 39, 9023.
[9]
Du, C.; Li, L.; Li, Y.; Xie, Z. Angew. Chem., Int. Ed. 2009, 48, 7853.
[10]
Doyle, M. G. J.; Gabbey, A. L.; McNutt, W.; Lundgren, R. J. Angew. Chem., Int. Ed. 2021, 60, 26495.
[11]
Trost, B. M.; Fandrick, D. R.; Brodmann, T.; Stiles, D. T. Angew. Chem., Int. Ed. 2007, 46, 6123.
[12]
Trost, B. M.; Malhotra, S.; David, E.; Olson, D. E.; Maruniak, A.; Bois J. D. J. Am. Chem. Soc. 2009, 131, 4190.
[13]
Mangion, I.; Strotman, N.; Drahl, M.; Imbriglio, J.; Guidry, E. Org. Lett. 2009, 11, 3258.
[14]
Breugst, M.; Tokuyasu, T.; Mayr, H. J. Org. Chem. 2010, 75, 5250.
[15]
Alibés, R.; Bayón, P.; March, P. D.; Figueredo, M.; Font, J.; García-García, E.; González-Gálvez, D. Org. Lett. 2005, 7, 5107.
[16]
Trost, B. M.; Osipov, M.; Dong, G.-B. J. Am. Chem. Soc. 2010, 132, 15800.
[17]
Takahashi, K.; Haraguchi, N.; Ishihara, J.; Hatakeyama, S. Synlett 2008, 671.
[18]
Raghunath, M.; Zhang, X. Tetrahedron Lett. 2005, 46, 8213.
[19]
Trost, B. M.; Zhang, T. Org. Lett. 2006, 8, 6007.
[20]
Hale, K. J.; Manaviazar, S.; George, J. H.; Walters, M. A.; Dalby, S. M. Org. Lett. 2009, 11, 733.
[21]
Takeda, Y.; Ikeda, Y.; Kuroda, A.; Tanaka, S.; Minakata, S. J. Am. Chem. Soc. 2014, 136, 8544.
[22]
Lin, T.-Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. Org. Lett. 2017, 19, 2897.
[23]
Lin, T.-Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. ACS Catal. 2017, 7, 4047.
[24]
Feng, J.; Garza, V. J.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 8911.
[25]
Wang, G.; Franke, J.; Ngo, C. Q.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 7915.
[26]
Xu, G.; Yang, G.; Wang, Y.; Shao, P.-L.; Yau, J. N. N.; Liu, B.; Zhao, Y.; Sun, Y.; Xie, X.; Wang, S.; Zhang, Y.; Xia, L.; Zhao, Y. Angew. Chem., Int. Ed. 2019, 58, 14082.
[27]
Shaghafi, M. B.; Grote, R. E.; Jarvo, E. R. Org. Lett. 2011, 13, 5188.
[28]
Liu, Z.; Feng, X.; Du, H. Org. Lett. 2012, 14, 3154.
[29]
Ma, C.; Huang, Y.; Zhao, Y. ACS Catal. 2016, 6, 6408.
[30]
Xu, C.-F.; Zheng, B.-H.; Suo, J.-J.; Ding, C.-H.; Hou, X.-L. Angew. Chem., Int. Ed. 2015, 54, 1604.
[31]
Suo, J.-J.; Du, J.; Liu, Q.-R.; Chen, D.; Ding, C.-H.; Peng, Q.; Hou, X.-L. Org. Lett. 2017, 19, 6658.
[32]
Cheng, Q.; Zhang, H.-J.; Yue, W.-J.; You, S.-L. Chem 2017, 3, 428.
[33]
Cheng, Q.; Zhang, F.; Cai, Y.; Guo, Y.-L.; You, S.-L. Angew. Chem., Int. Ed. 2018, 57, 2134.
[34]
Peng, Y.; Huo, X.; Luo, Y.; Wu, L.; Zhang, W. Angew. Chem., Int. Ed. 2021, 60, 24941.
[35]
Zhu, C.-Z.; Feng, J.-J.; Zhang, J. Angew. Chem., Int. Ed. 2017, 56, 1351.
[36]
(a) Morris, R. H. Chem. Soc. Rev. 2009, 38, 2282.
[36]
(b) Zhang, L.; Huang, Z. Synlett 2013, 1745.
[36]
(c) Zhu, S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580.
[36]
(d) Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.
[36]
(e) Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
[36]
(f) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
[36]
(g) Guo, J.; Cheng, Z.; Chen, J.; Chen, X.; Lu, Z. Acc. Chem. Res. 2021, 54, 2701.
[36]
(h) Chen, J.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.
[36]
(i) An, L.; Tong, F.; Zhang, X. Acta Chim. Sinica 2018, 76, 977. (in Chinese).
[36]
(安伦, 童非非, 张新刚, 化学学报, 2018, 76, 977.)
[36]
(j) Cheng, B.; Liu, W.; Lu, Z. J. Am. Chem. Soc. 2018, 140, 5014.
[36]
(k) Wang, S.; Sun, M.; Zhang, H.; Zhang, J.; He, Y.; Feng, Z. CCS Chem. 2020, 2, 2164.
[36]
(l) Zou, S.; Zhang, T.; Wang, S.; Huang, H. Chin. J. Chem. 2020, 38, 389.
[36]
(m) Wang, G.-X.; Yin, J.; Li, J.; Yin, Z.-B.; Wu, B.; Wei, J.; Zhang, W.-X.; Xi, Z. CCS Chem. 2021, 3, 308.
[36]
(n) Xu, S.; Liu, G.; Huang, Z. Chin. J. Chem. 2021, 39, 585.
[36]
(o) Li, W.-D.; Chen, J.; Zhu, D.-Y.; Xia, J.-B. Chin. J. Chem. 2021, 39, 614.
[36]
(p) Wu, L.; Wei, H.; Chen, J.; Zhang, W. Chin. J. Org. Chem. 2021, 41, 4208. (in Chinese).
[36]
(吴良, 魏瀚林, 陈建中, 张万斌, 有机化学, 2021, 41, 4208.)
[37]
(a) Pellissier, H.; Clavier, H. Chem. Rev. 2014, 114, 2775.
[37]
(b) Gandeepan, P.; Cheng, C.-H. Acc. Chem. Res. 2015, 48, 1194.
[37]
(c) Gu, Z.; Ji, S. Acta Chim. Sinica 2018, 76, 347. (in Chinese).
[37]
(顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)
[37]
(d) Wen, J.; Wang, F.; Zhang, X. Chem. Soc. Rev. 2021, 50, 3211.
[37]
(e) Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2010, 132, 12249.
[37]
(f) Friedfeld, M. R.; Shevlin, M.; Hoyt, J. M.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Science 2013, 342, 1076.
[37]
(g) Chen, Q. A.; Kim, D. K.; Dong, V. M. J. Am. Chem. Soc. 2014, 136, 3772.
[37]
(h) Yang, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 16748.
[37]
(i) Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.
[37]
(j) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. J. Am. Chem. Soc. 2015, 137, 16116.
[37]
(k) Friedfeld, M. R.; Shevlin, M.; Margulieux, G. W.; Campeau, L.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 3314.
[37]
(l) Wu, L.; Shao, Q.; Yang, G.; Zhang, W. Chem.-Eur. J. 2018, 24, 1241.
[37]
(m) Hu, Y.; Zhang, Z.; Zhang, J.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2019, 58, 15767.
[37]
(n) Li, X.; Wu, X.; Tang, L.; Xie, F.; Zhang, W. Chem.-Asian J. 2019, 14, 3835.
[37]
(o) Cheng, Z.; Xing, S.; Guo, J.; Cheng, B.; Hu, L.-F.; Zhang, X.-H.; Lu, Z. Chin. J. Chem. 2019, 37, 457.
[37]
(p) Lin, X.; Tan, Z.; Yang, W.; Yang, W.; Liu, X.; Feng, X. CCS Chem. 2020, 2, 1423.
[37]
(q) Hu, Y.; Zhang, Z.; Liu, Y.; Zhang, W. Angew. Chem., Int. Ed. 2021, 60, 16989.
[37]
(r) Li, B.; Chen, J.; Liu, D.; Gridnev, I. D.; Zhang, W. Nat. Chem. 2022, 14, 920.
[37]
(s) Jin, Y.; Zou, Y.; Hu, Y.; Han, Y.; Zhang, Z.; Zhang, W. Chem.- Eur. J. 2022, 28, e202201517.
[37]
(t) Peng, Y.; Han, C.; Luo, Y.; Li, G.; Huo, X.; Zhang, W. Angew. Chem., Int. Ed. 2022, 61, e202203448.
[37]
(u) Sheng, C.; Ling, Z.; Ahmad, T.; Xie, F.; Zhang, W. Chem.-Eur. J. 2022, 28, e202200128.
[37]
(v) Sheng, C.; Ling, Z.; Luo, Y.; Zhang, W. Nat. Commun. 2022, 13, 400.
[38]
(a) Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230.
[38]
(b) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
[38]
(c) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.
[38]
(d) Quan, M.; Wu, L.; Yang, G.; Zhang, W. Chem. Commun. 2018, 54, 10394.
[38]
(e) Chen, J.; Butt, N. A.; Zhang, W. Res. Chem. Intermed. 2019, 45, 5959.
[38]
(f) Cheng, L.; Zhou, Q. Acta Chim. Sinica 2020, 78, 1017. (in Chinese).
[38]
(程磊, 周其林, 化学学报, 2020, 78, 1017.)
[38]
(g) Quan, M.; Tang, L.; Shen, J.; Yang, G.; Zhang, W. Chem. Commun. 2017, 53, 609.
[38]
(h) Zhang, Y.; He, J.; Song, P.; Wang, Y.; Zhu, S. CCS Chem. 2020, 2, 2259.
[38]
(i) Li, Z.; Wu, D.; Ding, C.; Yin, G. CCS Chem. 2020, 2, 576.
[38]
(j) Li, B.; Chen, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2019, 58, 7329.
[38]
(k) Liu, D.; Li, B.; Chen, J.; Gridnev, I. D.; Yan, D.; Zhang, W. Nat. Commun. 2020, 11, 5935.
[38]
(l) Hu, Y.; Chen, J.; Li, B.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2020, 59, 5371.
[38]
(m) Li, B.; Liu, D.; Hu, Y.; Chen, J.; Zhang, Z.; Zhang, W. Eur. J. Org. Chem. 2021, 2021, 3421.
[38]
(n) Zhu, C.; Yue, H.; Nikolaienko, P.; Rueping, M. CCS Chem. 2020, 2, 179.
[38]
(o) Han, X.-W.; Zhang, T.; Yao, W.-W.; Chen, H.; Ye, M. CCS Chem. 2020, 2, 955.
[38]
(p) Quan, M.; Wang, X.; Wu, L.; Gridnev, I. D.; Yang, G.; Zhang, W. Nat. Commun. 2018, 9, 2258.
[38]
(q) Wu, X.; Xie, F.; Gridnev, I. D.; Zhang, W. Org. Lett. 2018, 20, 1638.
[39]
(a) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796.
[39]
(b) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
[39]
(c) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang W. Chem. Rev. 2015, 115, 1622.
[39]
(d) Wang, M.; Zhang, Z.; Xie, F.; Zhang, W. Chem. Commun. 2014, 50, 3163.
[39]
(e) Wu, X.; Xie, F.; Ling, Z.; Tang, L.; Zhang, W. Adv. Synth. Catal. 2016, 358, 2510.
[39]
(f) Zhang, D.-D.; Liu, Y.-L.; Wang, Y.; Wei, H.; Shi, M.; Wang, F.-J. Chin. Chem. Lett. 2016, 27, 563.
[39]
(g) Ling, Z.; Singh, S.; Xie, F.; Wu, L.; Zhang, W. Chem. Commun. 2017, 53, 5364.
[39]
(h) Shao, Q.; Wu, L.; Chen, J.; Gridnev, I. D.; Yang, G.; Xie, F.; Zhang, W. Adv. Synth. Catal. 2018, 360, 4625.
[39]
(i) Ling, Z.; Xie, F.; Gridnev, I. D., Terada, M.; Zhang, W. Chem. Commun. 2018, 54, 9446.
[39]
(j) Wu, X.; Xie, F.; Gridnev, I. D.; Zhang, W. Org. Lett. 2018, 20, 1638.
[39]
(k) Cheng, Z.; Chen, P.; Liu, G. Acta Chim. Sinica 2019, 77, 856. (in Chinese).
[39]
(成忠明, 陈品红, 刘国生, 化学学报, 2019, 77, 856.)
[39]
(l) You, Y.; Van Pham, Q.; Ge, S. CCS Chem. 2019, 1, 455.
[39]
(m) Lin, F.; Liang, Y.; Li, X.; Song, S.; Jiao, N. Acta Chim. Sinica 2019, 77, 906. (in Chinese).
[39]
(林凤闺蓉, 梁宇杰, 郦鑫耀, 宋颂, 焦宁, 化学学报, 2019, 77, 906.)
[39]
(n) Gan, X.-C.; Yin, L. CCS Chem. 2020, 2, 203.
[39]
(o) Gao, X.; Xiao, Y.-L.; Zhang, S.; Wu, J.; Zhang, X. CCS Chem. 2020, 2, 1463.
[39]
(p) Zhao, Q.; Isenegger, P. G.; Wilson, T. C.; Sap, J. B. I.; Guibbal, F.; Lu, L.; Gouverneur, V.; Shen, Q. CCS Chem. 2020, 2, 1921.
[39]
(q) Huang, H.; Lin, H.; Wang, M.; Liao, J. Acta Chim. Sinica 2020, 78, 1229. (in Chinese).
[39]
(黄浩, 林华鑫, 王敏, 廖建, 化学学报, 2020, 78, 1229.)
[39]
(r) Zhang, R.; Xu, B.; Zhang, Z.; Zhang, J. Acta Chim. Sinica 2020, 78, 245. (in Chinese).
[39]
(张荣华, 许冰, 张展鸣, 张俊良, 化学学报, 2020, 78, 245.)
[39]
(s) Zhang, G.; Liang, Y.; Qin, T.; Xiong, T.; Liu, S.; Guan, W.; Zhang, Q. CCS Chem. 2020, 2, 1737.
[39]
(t) Wu, F.-P.; Holz, J.; Yuan, Y.; Wu, X.-F. CCS Chem. 2020, 2, 2643.
[39]
(u) Jiang, C.; Chen, P.; Liu, G. CCS Chem. 2020, 2, 1884.
[40]
(a) Shaw, S.; White, J. D. Chem. Rev. 2019, 119, 9381.
[40]
(b) Lidskog, A.; Li, Y.; Wärnmark, K. Catalysts 2020, 10, 705.
[41]
(a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.
[41]
(b) Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121, 6086.
[41]
(c) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421.
[41]
(d) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307.
[42]
(a) Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 84.
[42]
(b) Ford, D. D.; Nielsen, L. P. C.; Zuend, S. J.; Musgrave, C. B.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 15595.
[42]
(c) North, M.; Quek, S. C. Z.; Pridmore, N. E.; Whitwood, A. C.; Wu, X. ACS Catal. 2015, 5, 3398.
[42]
(d) Solís-Muñana, P.; Salam, J.; Ren, C. Z. J.; Carr, B.; Whitten, A. E.; Warr, G. G.; Chen, J. L. Y. Adv. Synth. Catal. 2021, 363, 3207.
[42]
(e) Tang, L.; Li, X.; Xie, F.; Zhang, W. Chin. J. Org. Chem. 2020, 40, 575. (in Chinese).
[42]
(唐亮, 李雪薇, 谢芳, 张万斌, 有机化学, 2020, 40, 575.)
[43]
Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268.
[44]
Kalow, J. A.; Doyle, A. G. Tetrahedron 2013, 69, 5702.
[45]
Liu, J.; Wei, Y.; Tang, P. J. Am. Chem. Soc. 2018, 140, 15194.
[46]
Hattori, G.; Yoshida, A.; Miyake, Y.; Nishibayashi, Y. J. Org. Chem. 2009, 74, 7603.
[47]
Wang, C.; Yamamoto, H. J. Am. Chem. Soc. 2015, 137, 4308.
[48]
Yang, P.-J.; Qi, L.; Liu, Z.; Yang, G.; Chai, Z. J. Am. Chem. Soc. 2018, 140, 17211.
[49]
Ge, C.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Org. Lett. 2016, 18, 3122.
[50]
Zhao, Y.; Weix, D. J. J. Am. Chem. Soc. 2015, 137, 3237.
[51]
Banerjee, A.; Yamamoto, H. Org. Lett. 2017, 19, 4363.
[52]
Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle, A. G. J. Am. Chem. Soc. 2017, 139, 5688.
[53]
Lau, S. H.; Borden, M. A.; Steiman, T. J.; Wang, L. S.; Parasram, M.; Doyle, A. G. J. Am. Chem. Soc. 2021, 143, 15873.
[54]
Wu, L.; Yang, G.; Zhang, W. CCS Chem. 2020, 2, 623.
[55]
Wu, L.; Shao, Q.; Kong, L.; Chen, J.; Wei, Q.; Zhang, W. Org. Chem. Front. 2020, 7, 862.
[56]
Chen, W.; Fu, X.; Lin, L.; Yuan, X.; Luo, W.; Feng, J.; Liu, X.; Feng, X. Chem. Commun. 2014, 50, 11480.
[57]
Chen, W.; Xia, Y.; Lin, L.; Yuan, X.; Guo, S.; Liu, X.; Feng, X. Chem.-Eur. J. 2015, 21, 15104.
[58]
Yuan, X.; Lin, L.; Chen, W.; Wu, W.; Liu, X.; Feng, X. J. Org. Chem. 2016, 81, 1237.
[59]
Wu, X.; Zhou, W.; Wu, H.-H.; Zhang, J. Chem. Commun. 2017, 53, 5661.
[60]
Xu, J.; Song, Y.; He, J.; Dong, S.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2021, 60, 14521.
[61]
Zhang, J.; Yang, W.-L.; Zheng, H.; Wang, Y.; Deng, W.-P. Angew. Chem., Int. Ed. 2022, 61, e202117079.
[62]
(a) Schneider, C.; Sreekanth, A. R.; Mai, E. Angew. Chem., Int. Ed. 2004, 43, 5691.
[62]
(b) Fujimori, I.; Mita, T.; Maki, K.; Shiro, M.; Sato, A.; Furusho, S.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 16438.
[62]
(c) Wu, B.; Gallucci, J. C.; Parquette, J. R.; RajanBabu, T. V. Angew. Chem., Int. Ed. 2009, 48, 1126.
[62]
(d) Wang, C.; Yamamoto, H. Angew. Chem., Int. Ed. 2014, 53, 13920.
[62]
(e) Xu, Y.; Kaneko, K.; Kanai, M.; Shibasaki, M.; Matsunaga, S. J. Am. Chem. Soc. 2014, 136, 9190.
[62]
(f) Tak, R.; Kumar, M.; Menapara, T.; Choudhary, M. K.; Kureshy, R. I.; Khan, N. H. ChemCatChem 2017, 9, 322.
文章导航

/