综述与进展

电化学促进的烯烃和炔烃双官能团化反应研究进展

  • 李秀英 ,
  • 陶萍芳 ,
  • 程泳渝 ,
  • 胡琼 ,
  • 黄伟娟 ,
  • 李芸 ,
  • 罗志辉 ,
  • 黄国保
展开
  • 玉林师范学院 广西农产资源化学与生物技术重点实验室 广西玉林 537000
共同第一作者

收稿日期: 2022-04-27

  修回日期: 2022-06-13

  网络出版日期: 2022-09-09

基金资助

国家自然科学基金(21961042); 广西高校中青年教师基础能力提升(2021KY0587); 广西高校中青年教师基础能力提升(2022KY0572); 玉林师范学院科研(G2021ZK16); 玉林师范学院科研(G2022ZK08)

Recent Progress on the Electrochemical Difunctionalization of Alkenes/Alkynes

  • Xiuying Li ,
  • Pingfang Tao ,
  • Yongyu Cheng ,
  • Qiong Hu ,
  • Weijuan Huang ,
  • Yun Li ,
  • Zhihui Luo ,
  • Guobao Huang
Expand
  • Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, Guangxi 537000
These authors contributed equally to this work.

Received date: 2022-04-27

  Revised date: 2022-06-13

  Online published: 2022-09-09

Supported by

National Natural Science Foundation of China(21961042); Basic Ability Improvement Project of Young and Middle-Aged Teachers in Guangxi Colleges(2021KY0587); Basic Ability Improvement Project of Young and Middle-Aged Teachers in Guangxi Colleges(2022KY0572); Program of Yulin Normal University(G2021ZK16); Program of Yulin Normal University(G2022ZK08)

摘要

不饱和烃(烯烃或炔烃)的双官能团化反应是引入一些官能团的重要策略, 也是合成多取代烃类化合物的重要方法, 在天然产物全合成及药物合成等领域被广泛应用. 综述了最近五年来电化学介导不饱和烃的双官能团化反应中的最新研究进展. 按照烯烃的双官能团化、不饱和烃的环化反应的分类介绍了电化学介导在不饱和烃的双官能团化反应中的应用及相关的反应机理, 为今后此类反应在有机合成中的应用提供参考.

本文引用格式

李秀英 , 陶萍芳 , 程泳渝 , 胡琼 , 黄伟娟 , 李芸 , 罗志辉 , 黄国保 . 电化学促进的烯烃和炔烃双官能团化反应研究进展[J]. 有机化学, 2022 , 42(12) : 4169 -4201 . DOI: 10.6023/cjoc202204066

Abstract

The difunctionalization of unsaturated hydrocarbons (alkenes or alkynes) is an important strategy to introduce functional groups, and is also an important method to synthesize polysubstituted hydrocarbons, which is widely used in the fields of total synthesis of natural products and drug synthesis. The latest research progress on the electrochemically enabled difunctionalization of alkenes or alkynes in recent five years is summarized. According to the classification of difunctionalization of alkenes and cyclization of unsaturated hydrocarbon, the application and the related reaction mechanism are introduced. It is hoped that this review can be referred to the future application in organic synthesis of electrochemic- mediated difunctionalization of alkenes/alkynes.

参考文献

[1]
(a) Lan, X. W.; Wang, N. X.; Xing, Y. Eur. J. Org. Chem. 2017, 2017, 5821.
[1]
(b) Chen, X.; Xiao, F.; He, W. M. Org. Chem. Front. 2021, 8, 5206.
[2]
Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292.
[3]
(a) Steckhan, E.; Arns, T.; Heineman, W. R.; Hilt, G.; Hoormann, D.; Jorissen, J.; Kroner, L.; Lewall, B.; Putter, H. Chemosphere 2001, 43, 63.
[3]
(b) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.; Vasquez-Medrano, R. Green Chem. 2010, 12, 2099.
[3]
(c) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
[3]
(d) LaBelle, E. V.; Marshall, C. W.; May, H. D. Acc. Chem. Res. 2020, 53, 62.
[4]
Zhang, X.; Cui, T.; Zhao, X.; Liu, P.; Sun, P. Angew. Chem., Int. Ed. 2020, 59, 3465.
[5]
Huang, Y.; Hong, H.; Zou, Z.; Liao, C.; Lu, J.; Qin, Y.; Li, Y.; Chen, L. Org. Biomol. Chem. 2019, 17, 5014.
[6]
Jud, W.; Kappe, C. O.; Cantillo, D. Chem.-Eur. J. 2018, 24, 17234.
[7]
Zhang, L.; Zhang, G.; Wang, P.; Li, Y.; Lei, A. Org. Lett. 2018, 20, 7396.
[8]
Siu, J. C.; Sauer, G. S.; Saha, A.; Macey, R. L.; Fu, N. K.; Chauviré, T.; Lancaster, K. M.; Lin, S. J. Am. Chem. Soc. 2018, 140, 12511.
[9]
Xu, H. H.; Song, J.; Xu, H. C. ChemSusChem 2019, 12, 3060.
[10]
Yuan, Y.; Cao, Y.; Lin, Y.; Li, Y.; Huang, Z.; Lei, A. ACS Catal. 2018, 8, 10871.
[11]
Kong, X.; Yu, K.; Chen, Q.; Xu, B. Asian J. Org. Chem. 2020, 9, 1.
[12]
Zheng, M. W.; Yuan, X.; Cui, Y. S.; Qiu, J. K.; Li, G. G.; Guo, K. Org. Lett. 2018, 20, 7784.
[13]
Zhang, Z. F.; Yan, J. Y.; Ma, D. K.; Sun, J. W. Chin. Chem. Lett. 2019, 30, 1509.
[14]
Mei, H. B.; Liu, J.; Guo, Y. J.; Han, J. L. ACS Omega 2019, 4, 14353.
[15]
Luo, M.-J.; Liu, B.; Li, Y.; Hu, M.; Li, J.-H. Adv. Synth. Catal. 2019, 361, 1538.
[16]
Gao, Y. Y.; Mei, H. B.; Han, J. L.; Pan, Y. Chem.-Eur. J. 2018, 24, 17205.
[17]
Sun, X.; Ma, H. X.; Mei, T. S.; Fang, P.; Hu, Y. Org. Lett. 2019, 9, 3167.
[18]
Dai, C. H.; Shen, Y. J.; Wei, Y. F.; Liu, P.; Sun, P. P. J. Org. Chem. 2021, 86, 13711.
[19]
Xiong, P.; Long, H.; Song, J.; Wang, Y.; Li, J. F.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 16387.
[20]
Zhang, S.; Li, L.; Wu, P.; Gong, P.; Liu, R.; Xu, K. Adv. Synth. Catal. 2019, 361, 485.
[21]
Zhang, X.; Cui, T.; Zhao, X.; Liu, P.; Sun, P. Angew. Chem., Int. Ed. 2020, 59, 3465.
[22]
Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Science 2017, 357, 575.
[23]
Fu, N.; Sauer, G. S.; Lin, S. J. Am. Chem. Soc. 2017, 139, 15548.
[24]
Fu, N.; Shen, Y.; Allen, A. R.; Song, L.; Ozaki, A.; Lin, S. ACS Catal. 2019, 9, 746.
[25]
Fu, N. K.; Song, L.; Liu, J. J.; Shen, Y. F.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480.
[26]
Sun, X.; Ma, H.-M.; Mei, T.-S.; Fang, P.; Hu, Y.-L. Org. Lett. 2019, 21, 3167.
[27]
Cai, C.-Y.; Zheng, Y.-T.; Li, J.-F.; Xu, H.-C. J. Am. Chem. Soc. 2022, 144, 11980.
[28]
Wu, H.; Chen, W.; Deng, W.; Yang, L.; Li, X.; Hu, Y.; Li, Y.; Chen, L.; Huang, Y. Org. Lett. 2022, 24, 1412.
[29]
Zhang, S.; Gao, W.; Shi, J.; Li, J.; Li, F.; Liang, Y.; Zhan, X.; Li, M.-B. Org. Chem. Front. 2022, 9, 1261
[30]
Liu, J.; Xu, J.; Mei, H.; Han, J. Green Chem. 2022, 24, 6113.
[31]
Zhou, Pan.; Niu, K.; Song, H.; Liu, Y.; Wang, Q. Green Chem. 2022, 24, 5760
[32]
Kong, X.; Chen, X.; Chen, Y.; Cao, Z.-Y. J. Org. Chem. 2022, 87, 7013.
[33]
Tan, Z.; Xiang, F.; Xu, Kun.; Zeng, C. Org. Lett. 2022, 24, 5345.
[34]
Liang, S.; Zeng, C.-C.; Luo, X.-G.; Ren, F.-Z.; Tian, H.-Y.; Sun, B.-G.; Little, R. D. Green Chem. 2016, 18, 2222.
[35]
Yan, W.-Q.; Lin, M.-Y.; Little, R. D.; Zeng, C.-C. Tetrahedron 2017, 73, 764.
[36]
Doobary, S.; Sedikides, A. T.; Caldora, H. P.; Poole, D. L.; Lennox, A. J. J. Angew. Chem., Int. Ed. 2020, 59, 1155.
[37]
Yang, D.; Yan, Q.; Zhu, E.; Lv, J.; He, W. Chin. Chem. Lett. 2022, 33, 1798.
[38]
Pan, Y. Z.; Meng, X. J.; Cheng, S.-Y.; Li, Q. Y.; Tang, H. T.; Pan, Y. M. Synlett 2021, 32, 593.
[39]
(a) Mo, Z. Y.; Zhang, Y. Z.; Huang, G. B.; Wang, X. Y.; Tang, H. T. Adv. Synth. Catal. 2020, 362, 2160.
[39]
(b) Cheng, S. Y.; Ou, C. H.; Lin, H. M.; Jia, J. S.; Tang, H.T.; Pan, Y. M.; Huang, G. B.; Meng, X. J. Chin. J. Org. Chem. 2021, 41, 4718. (in Chinese)
[39]
( 程诗砚, 欧楚鸿, 林洪敏, 贾均松, 唐海涛, 潘英明, 黄国保, 蒙秀金, 有机化学, 2021, 41, 4718.)
[40]
Zhang, Y. Z.; Mo, Z. Y.; Wang, H. S.; Wen, X. A.; Tang, H. T.; Pan, Y. M. Green Chem. 2019, 21, 3807.
[41]
Zhang, W.; Lin, S. J. Am. Chem. Soc. 2020, 49, 20661.
[42]
(a) Shatskiy, A.; Lundberg, H.; K?rk?s, M. D. ChemElectroChem 2019, 6, 4067.
[42]
(b) Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Chem. Rev. 2020, 14, 6490.
[42]
(c) Martins, G. M.; Zimmer, G. C.; Mendes, S. R.; Ahmed, N. Green Chem. 2020, 22, 4849.
[43]
Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y.-H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226.
[44]
Xu, H. C.; Campbell, J. M.; Moeller, K. D. J. Org. Chem. 2014, 79, 379.
[45]
Tang, S.; Gao, X.; Lei, A. Chem. Commun. 2017, 53, 3354.
[46]
Wang, X. Y.; Zhong, Y. F.; Mo, Z. Y.; Wu, S. H.; Xu, Y. L.; Tang, H. T.; Pan, Y. M. Adv. Synth. Catal. 2021, 363, 208.
[47]
Zhong, P. F.; Lin, H. M.; Wang, L. W.; Mo, Z. Y.; Meng, X. J.; Tang, H. T.; Pan, Y. M. Green Chem. 2020, 22, 6334.
[48]
Meng, X. J.; Zhong, P. F.; Wang, Y. M.; Wang, H. S.; Tang, H. T.; Pan, Y. M. Adv. Synth. Catal. 2020, 362, 506.
[49]
Kharma, A.; Jacob, Cl.; Bozzi, í. A. O.; Jardim, G. A. M.; Braga, A. L.; Salom?o, K.; Gatto, C. C.; Silva, M. F. S.; Pessoa, C.; Stangier, M.; Ackermann, L.; Júnior, E. N. S. Eur. J. Org. Chem. 2020, 29, 4474.
[50]
Ye, K. Y.; Song, Z.; Sauer, G. S.; Harenberg, J. H.; Fu, N.; Lin, S. Chem.-Eur. J. 2018, 24, 12274.
[51]
He, T.-J.; Zhong, W.-Q.; Huang, J.-M. Chem. Commun. 2020, 56, 2735.
[52]
Jiang, Y.-Y.; Dou, G.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2018, 5, 2573.
[53]
Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
[54]
Claraz, A.; Courant, T.; Masson, G. Org. Lett. 2020, 22, 1580.
[55]
Li, Z.; Jiao, L.; Sun, Y.; He, Z.; Wei, Z.; Liao, W. Angew. Chem., Int. Ed. 2020, 59, 7266.
[56]
Zhang, S.; Li, L. J.; Zhang, J. J.; Zhang, J. Q.; Xue, M. Y.; Xu, K. Chem. Sci. 2019, 10, 3181.
[57]
Kang, J.-C.; Tu, Y.-Q.; Dong, J.-W.; Chen, C.; Zhou, J.; Ding, T.-M.; Zai, J.-T.; Chen, Z.-M.; Zhang, S.-Y. Green Chem. 2020, 22, 16.
[58]
Yang, J.; Li, G.; Yu, Ke.; Xu, Bo.; Chen, Q. J. Org. Chem. 2022, 87, 1208.
[59]
Yang, F.; Nie, Y.-C.; Liu, H.-Y. Zhang, L.; Mo, F.; Zhu, R. ACS Catal. 2022, 12, 2132.
[60]
Hou, Z. W.; Mao, Z. Y.; Song, J.; Xu, H. C. ACS Catal. 2017, 7, 5810.
[61]
Xiong, P.; Xu, H. H.; Song, J.; Xu, H. C. J. Am. Chem. Soc. 2018, 140, 2460.
[62]
Hou, Z. W.; Mao, Z. Y.; Melcamu, Y. Y.; Lu, X.; Xu, H. C. Angew. Chem., Int. Ed. 2018, 57, 1636.
[63]
Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168.
[64]
Xu, F.; Long, H.; Song, J.; Xu, H. Angew. Chem., Int. Ed. 2019, 58, 9017.
[65]
Hou, Z.-W.; Xu, H.-C. Chin. J. Chem. 2020, 38, 394.
[66]
Wen, J.; Shi, W.; Zhang, F.; Liu, D.; Tang, S.; Wang, H.; Lin, X. M.; Lei, A. Org. Lett. 2017, 19, 3131.
[67]
Wang, L. W.; Feng, Y. F.; Lin, H. M.; Tang, H. T.; Pan, Y. M.; J. Org. Chem. 2021, 22, 16121.
[68]
Hua, J.; Fang, Z.; Xu, J.; Bian, M.; Liu, C. K.; He, W.; Zhu, N.; Yang, Z.; Guo, K. Green Chem. 2019, 21, 4706.
[69]
Cai, C.; Lu, Y.; Yuan, C.; Fang, Z.; Yang, X.; Liu, C.; Guo, K. ACS Sustainable Chem. Eng. 2022, 10, 3288.
[70]
Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2018, 20, 5695.
[71]
Cai, C. Y.; Xu, H. C. Nat. Commun. 2018, 9, 3551.
[72]
Tang, S.; Wang, D.; Liu, Y.; Zeng, L.; Lei, A. Nat. Commun. 2018, 9, 798.
[73]
Huang, P.; Wang, P.; Wang, S.; Tang, S.; Lei, A. Green Chem. 2018, 20, 4870.
[74]
Teng, Q. H.; Sun, Y.; Yao, Y.; Tang, H. T.; Li, J. R.; Pan, Y. M. ChemElectroChem 2019, 6, 3120.
[75]
Xiong, T.-K.; Zhou, X.-Qi.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328.
[76]
Tian, C.; Massignan, L.; Meyer, T. H.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 2383.
[77]
Mei, R.; Sauermann, N.; Oliveira, J. C. A.; Ackermann, L. J. Am. Chem. Soc. 2018, 140, 7913.
[78]
Kong, W.-J.; Shen, Z. G.; Finger, L. H.; Ackermann, L. Angew. Chem., Int. Ed. 2020, 59, 5551.
[79]
Qiu, Y. A.; Tian, C.; Massignan, L.; Rogge, T.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5818.
[80]
Mei, R.; Koeller, J.; Ackermann, L. Chem. Commun. 2018, 54, 12879.
[81]
Xu, F.; Huang, Y.-J.; Li, C.; Xu, H.-C. ACS Catal. 2018, 8, 3820.
[82]
Luo, M. J.; Zhang, T. T.; Cai, F. J.; Li, J. H.; He, D. L. Chem. Commun. 2019, 55, 7251.
[83]
He, M. X.; Mo, Z. Y.; Wang, Z. Q.; Cheng, S. Y.; Xie, R. R.; Tang, H. T.; Pan, Y. M. Org. Lett. 2020, 22, 724.
[84]
Li, Q. Y.; Cheng, S. Y.; Tang, H. T.; Pan, Y. M. Org. Lett. 2019, 21, 9841.
[85]
Wang, Z.-Q.; Hou, C.; Zhong, Y.-F.; Lu, Y.-X.; Mo, Z.-Y.; Pan, Y.-M.; Tang, H.-T. Green Chem. 2019, 21, 5517.
[86]
Hu, X.; Nie, L.; Zhang, G.; Lei, A. Angew. Chem., Int. Ed. 2020, 25, 15238.
[87]
Cai, C.; Lu, Y.; Yuan, C.; Fang, Z.; Yang, X.; Liu, C.; Guo, K. ACS Sustainable Chem. Eng. 2021, 9, 16989.
[88]
Mo, Z.-Y.; Swaroop, T. R.; T, Wei.; Zhang, Y. Z.; Tang, H. T.; Pan, Y. M.; Sun, H. B.; Chen, Z.-F. Green Chem. 2018, 20, 4428.
[89]
Wang, Z. Q.; Meng, X. J.; Li, Q. Y.; Tang, H. T.; Wang, H. S.; Pan, Y. M. Adv. Synth. Catal. 2018, 360, 4043.
文章导航

/