综述与进展

光催化去消旋化的研究进展

  • 苏艺雯 ,
  • 邹有全 ,
  • 肖文精
展开
  • a 武汉大学药学院 武汉 430071
    b 武汉大学泰康生命医学中心 武汉 430071
    c 华中师范大学化学学院 武汉 430079

收稿日期: 2022-07-31

  修回日期: 2022-09-04

  网络出版日期: 2022-09-15

基金资助

武汉大学人才启动基金(691000002); 武汉大学人才启动基金(600460026); 国家自然科学基金(21820102003); 国家自然科学基金(91956201)

Recent Advances in Photocatalytic Deracemization

  • Yiwen Su ,
  • Youquan Zou ,
  • Wenjing Xiao
Expand
  • a School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071
    b TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071
    c College of Chemistry, Central China Normal University, Wuhan 430079
* Corresponding authors. E-mail: ;

Received date: 2022-07-31

  Revised date: 2022-09-04

  Online published: 2022-09-15

Supported by

Start-up Funding from Wuhan University(691000002); Start-up Funding from Wuhan University(600460026); National Natural Science Foundation of China(21820102003); National Natural Science Foundation of China(91956201)

摘要

手性广泛存在于众多天然产物和药物分子中, 由于对映体之间具有不同甚至是相反的生理活性, 获得光学纯的手性化合物具有重要的研究意义. 去消旋化是获得单一对映体最直接、最有效和最原子经济的途径, 而新兴的光催化去消旋化由于其高效性更是备受瞩目. 综述了光催化去消旋化最新的研究进展, 并对该领域未来的研究前景进行了展望.

本文引用格式

苏艺雯 , 邹有全 , 肖文精 . 光催化去消旋化的研究进展[J]. 有机化学, 2022 , 42(10) : 3201 -3212 . DOI: 10.6023/cjoc202207046

Abstract

Chirality is widely found in many natural products and drug molecules. It is of great significance to obtain optically pure chiral compounds because of the fact that different enantiomers have distinct or even opposite physiological activities. Deracemization is the most direct, efficient and atom-economic approach to obtain a single enantiomer, and the emerging photocatalytic deracemization attracts much attention because of its high efficiency. Herein, the recent advances in photocatalytic deracemization are summarized. The future research direction of this field is also prospected.

参考文献

[1]
List, B.; Yang, J. W. Science 2006, 313, 1584.
[2]
Graaff, C.; Ruijter, E.; Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969.
[3]
Han, B.; He, X. H.; Liu, Y. Q.; He, G.; Peng, C.; Li, J. L. Chem. Soc. Rev. 2021, 50, 1522.
[4]
Lin, G.-Q.; Wang, M.-X. Chiral Synthesis and Chiral Drugs, Chemical Industry Press, Beijing, 2008. (in Chinese).
[4]
(林国强, 王梅祥, 手性合成与手性药物, 化学工业出版社, 北京, 2008.)
[5]
Ding, K.-L.; Fan, Q.-H. New Concepts and Methods for Asymmetric Catalysis, Chemical Industry Press, Beijing, 2008. (in Chinese).
[5]
(丁奎岭, 范青华, 不对称催化新概念与新方法, 化学工业出版社, 北京, 2009.)
[6]
Zheng, C.; You, S.-L. ACS Cent. Sci. 2021, 7, 432.
[7]
Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557.
[8]
Faber, K. Chem. Eur. J. 2001, 7, 5004.
[9]
Blackmond, D. G. Angew. Chem., Int. Ed. 2009, 48, 2648.
[10]
Nakamura, T.; Ban, K.; Yoshida, Y.; Mino, T.; Kasashima, Y.; Sakamoto, M. Chem. Eur. J. 2021, 27, 16338.
[11]
Sanada, K.; Washio, A.; Ishikawa, H.; Yoshida, Y.; Mino, T.; Sakamoto, M. Angew. Chem., Int. Ed. 2022, 61, e202201268.
[12]
Sanada, K.; Washio, A.; Nishihata, K.; Yagishita, F.; Yoshida, Y.; Mino, T.; Suzuki, S.; Kasashima, Y.; Sakamoto, M. Cryst. Growth Des. 2021, 21, 6051.
[13]
Kolarovič, A.; Jakubec, P. Adv. Synth. Catal. 2021, 363, 4110.
[14]
Guillot, M.; Meester, J.; Huynen, S.; Collard, L.; Robeyns, K.; Riant, O.; Leyssens, T. Angew. Chem., Int. Ed. 2020, 59, 11303.
[15]
Kosmrlj, J.; Weigel, L. O.; Evans, D. A.; Downey, C. W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 3208.
[16]
Aranda, C.; Oksdath-Mansilla, G.; Bisogno, F. R.; Gonzalo, G. Adv. Synth. Catal. 2020, 362, 1233.
[17]
Rachwalski, M.; Vermue, N.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2013, 42, 9268.
[18]
Adair, G. R. A.; Williams, J. M. J. Chem. Commun. 2007, 25, 2608.
[19]
Shimada, Y.; Miyake, Y.; Matsuzawa, H.; Nishibayashi, Y. Chem. Asian J. 2007, 2, 393.
[20]
Lackner, A. D.; Samant, A. V.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14090.
[21]
Ji, Y.; Shi, L.; Chen, M. W.; Feng, G. S.; Zhou, Y. G. J. Am. Chem. Soc. 2015, 137, 10496.
[22]
Wan, M.; Sun, S. T.; Li, Y. S.; Liu, L. Angew. Chem., Int. Ed. 2017, 56, 5116.
[23]
Qu, P. Y.; Kuepfert, M.; Jockusch, S.; Weck, M. ACS Catal. 2019, 9, 2701.
[24]
Mao, Y.; Wang, Z. H.; Wang, G.; Zhao, R.; Kan, L. L.; Pan, X. G.; Liu, L. ACS Catal. 2020, 10, 7785.
[25]
Zhang, Z. K.; Hu, X. L. Angew. Chem., Int. Ed. 2021, 60, 22833.
[26]
Zhao, Z. T.; Wang, C. Y.; Chen, Q. P.; Wang, Y.; Xiao, R.; Tan, C. X.; Liu, G. H. ChemCatChem 2021, 13, 4055.
[27]
Chen, X.-H.; Zhao, R.; Liu, Z.-Q.; Sun, S.-T.; Ma, Y.-G.; Liu, Q.-Y.; Sun, X.; Liu, L. Chin. Chem. Lett. 2021, 32, 2305.
[28]
Ma, Y.-G.; Liu, X.-G.; Mao, Y.; Huang, J.-C.; Ma, S.-T.; Liu, L. Org. Chem. Front. 2020, 7, 2526.
[29]
Zhang, L.; Zhu, R.-X.; Feng, A.-L.; Zhao, C.-Y.; Chen, L.; Feng, G.-D.; Liu, L. Chem. Sci. 2020, 11, 4444.
[30]
Meng, F.-J.; Shao, B.-R.; Velopolcek, M. K.; Guo, X.; Feng, G.-S.; Shi, L. Org. Biomol. Chem. 2021, 19, 10570.
[31]
Lu, R.; Li, Y.-S.; Zhao, J.-Q.; Li, J.; Wang, S.-G.; Liu, L. Chem. Commun. 2018, 54, 4445.
[32]
Chen, X.-H.; Yan, L.; Zhang, L.; Zhao, C.-Y.; Feng, G.-D.; Chen, L.; Sun, S.-T.; Liu, Q.-Y.; Liu, L. Tetrahedron Lett. 2020, 61, 152107.
[33]
Yang, B.; Cui, P.; Chen, Y.-S.; Liu, Q.-X.; Zhou, H.-F. Tetrahedron Lett. 2020, 61, 152530.
[34]
Shi, Q. L.; Ye, J. T. Angew. Chem., Int. Ed. 2020, 59, 4998.
[35]
Hölzl-Hobmeier1, A.; Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T. Nature 2018, 564, 240.
[36]
Plaza, M.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed. 2020, 59, 12785.
[37]
Plaza, M.; Großkopf, J.; Breitenlechner, S.; Bannwarth, C.; Bach, T. J. Am. Chem. Soc. 2021, 143, 11209.
[38]
Kratz, T.; Steinbach, P.; Breitenlechner, S.; Storch, G.; Bannwarth, C.; Bach, T. J. Am. Chem. Soc 2022, 144, 10133.
[39]
Tröster, A.; Bauer, A.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed. 2019, 58, 3538.
[40]
Li, X. Y.; Kutta, R. J.; Jandl, C.; Bauer, A.; Nuernberger, P.; Bach, T. Angew. Chem., Int. Ed. 2020, 59, 21640.
[41]
Großkopf, J.; Plaza, M.; Seitz, A.; Breitenlechner, S.; Storch, G.; Bach, T. J. Am. Chem. Soc. 2021, 143, 21241.
[42]
Wimberger, L.; Kratz, T.; Bach, T. Synthesis 2019, 51, 4417.
[43]
Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Science 2019, 366, 364.
[44]
Zhang, C. H.; Gao, A. Z.; Nie, X; Ye, C. X.; Ivlev, S. I.; Chen, S. M.; Meggers, E. J. Am. Chem. Soc. 2021, 143, 13393.
[45]
Huang, M. X.; Zhang, L.; Pan, T. R.; Luo, S. Z. Science 2022, 375, 869.
[46]
Huang, X.; Ma, S. M. Acc. Chem. Res. 2019, 52, 1301.
[47]
Ouannes, C.; Beugelmans, R.; Roussi, G. J. Am. Chem. Soc. 1973, 95, 8472.
[48]
Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.
[49]
Zou, Y.-Q.; Hörmann, F. M.; Bach, T. Chem. Soc. Rev. 2018, 47, 278.
[50]
Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
[51]
Chen, J.-R.; Hu, X.-Q.; Lu, L.Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
[52]
Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 1586.
[53]
Nevesely?, T.; Wienhold, M.; Molloy, J. J.; Gilmour, R. Chem. Rev. 2022, 122, 2650.
[54]
Fu, N. K.; Zhang, L.; Li, J. Y.; Luo, S. Z.; Cheng, J. P. Angew. Chem., Int. Ed. 2011, 50, 11451.
[55]
Balavoine, G.; Juge, S.; Kagan, H. B. Tetrahedron Lett. 1973, 14, 4159.
文章导航

/