N-胺基吡啶盐作为氮自由基前体在可见光诱导碳氮键形成反应中的进展
收稿日期: 2022-07-08
修回日期: 2022-08-26
网络出版日期: 2022-10-10
基金资助
国家自然科学基金(21772107)
Progress of N-Amino Pyridinium Salts as Nitrogen Radical Precursors in Visible Light Induced C—N Bond Formation Reactions
Received date: 2022-07-08
Revised date: 2022-08-26
Online published: 2022-10-10
Supported by
National Natural Science Foundation of China(21772107)
杨少慧 , 宋敬城 , 董道青 , 杨昊 , 周梦宇 , 张会淑 , 王祖利 . N-胺基吡啶盐作为氮自由基前体在可见光诱导碳氮键形成反应中的进展[J]. 有机化学, 2022 , 42(12) : 4099 -4110 . DOI: 10.6023/cjoc202207019
Because of the redox properties of pyridine salt, it is found that N-amino pyridine salt plays an important role in free radical chemistry. N-Amino pyridinium salts easily undergo single electron reduction and N—N bond fragmentation to deliver N radicals. In this review, the advances of N-amino pyridinium salt serves as a powerful nitrogen radical precursor in visible light induced reactions for C—N bond formation are summarized in the last three years. According to the reaction substrates, the review is divided into three parts: react with arenes, react with olefins, and react with alkanes.
Key words: pyridinium salts; radical; visible light; green organic synthesis
| [1] | (a) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871. |
| [1] | (b) Qin, F.-H.; Huang, X.-J.; Liu, Y.; Liang, H.; Li, Q.; Cao, Z.; Wei, W.-T.; He, W.-M. Chin. Chem. Lett. 2020, 31, 3267. |
| [1] | (c) Han, Q.-Q.; Chen, D.-M.; Wang, Z.-L.; Sun, Y.-Y.; Yang, S.-H.; Song, J.-C.; Dong, D.-Q. Chin. Chem. Lett. 2021, 32, 2559. |
| [1] | (d) Yue, B. T.; Wu, X. X.; Zhu, C. Chin. J. Org. Chem. 2022, 42, 458. (in Chinese) |
| [1] | ( 乐柏佟, 吴新鑫, 朱晨, 有机化学, 2022, 42, 458.) |
| [1] | (e) Pillitteri, S.; Ranjan, P.; Van der Eycken, E. V.; Sharma, U. K. Adv. Synth. Catal. 2022, 364, 1643. |
| [1] | (f) Chen, N.; Lei, J.; Wang, Z. C.; Liu, Y. J.; Sun, K.; Tang, S. Chin. J. Org. Chem. 2022, 42, 1061. (in Chinese) |
| [1] | ( 陈宁, 雷佳, 王智传, 刘颖杰, 孙凯, 唐石, 有机化学, 2022, 42, 1061.) |
| [1] | (g) Han, Q. Q.; Sun, Y. Y.; Yang, S. H.; Song, J. C.; Wang, Z. L. Chin. Chem. Lett. 2021, 32, 3632. |
| [2] | (a) Wei, W.-T.; Li, Q.; Zhang, M.-Z.; He, W.-M. Chin. J. Catal. 2021, 42, 731. |
| [2] | (b) Yang, W.-C.; Chen, C.-Y.; Li, J.-F.; Wang, Z.-L. Chin. J. Catal. 2021, 42, 1865. |
| [2] | (c) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2017, 56, 1960. |
| [2] | (d) Ham, W. S.; Hillenbrand, J.; Jacq, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2019, 58, 532. |
| [2] | (e) Liu, W.-D.; Xu, G.-Q.; Hu, X.-Q.; Xu, P.-F. Org. Lett. 2017, 19, 6288. |
| [2] | (f) Miyazawa, K.; Koike, T.; Akita, M. Tetrahedron 2016, 72, 7813. |
| [2] | (g) Vellakkaran, M.; Kim, T.; Hong, S. Angew. Chem., Int. Ed. 2022, 61, e202113658. |
| [2] | (h) Moon, Y.; Park, B.; Kim, I.; Kang, G.; Shin, S.; Kang, D.; Baik, M.-H.; Hong, S. Nat. Commun. 2019, 10, 4117. |
| [2] | (i) R?ssler, S. L.; Jelier, B. J.; Tripet, P. F.; Shemet, A.; Jeschke, G.; Togni, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2019, 58, 526. |
| [3] | (a) Wang, Y.; Bao, Y.; Tang, M.; Ye, Z.; Yuan, Z.; Zhu, G. Chem. Commun. 2022, 58, 3847. |
| [3] | (b) Sowmiah, S.; Esperan?a, J. M. S. S.; Rebelo, L. P. N.; Afonso, C. A. M. Org. Chem. Front. 2018, 5, 453. |
| [3] | (c) Rossler, S. L.; Jelier, B. J.; Magnier, E.; Dagousset, G.; Carreira, E. M.; Togni, A. Angew. Chem., Int. Ed. 2020, 59, 9264. |
| [3] | (d) He, F.-S.; Ye, S.; Wu, J. ACS Catal. 2019, 9, 8943. |
| [4] | Greulich, T. W.; Daniliuc, C. G.; Studer, A. Org. Lett. 2015, 17, 254. |
| [5] | Yang, Z.; Cao, K.; Peng, X.; Lin, L.; Fan, D.; Li, J. L.; Wang, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Chem. 2021, 39, 3347. |
| [6] | Miyazawa, K.; Koike, T.; Akita, M. Chem.-Eur. J. 2015, 21, 11677. |
| [7] | Mo, J.-N.; Yu, W.-L.; Chen, J.-Q.; Hu, X.-Q.; Xu, P.-F. Org. Lett. 2018, 20, 4471. |
| [8] | Yu, W.-L.; Chen, J.-Q.; Wei, Y.-L.; Wang, Z.-Y.; Xu, P.-F. Chem. Commun. 2018, 54, 1948. |
| [9] | Goliszewska, K.; Rybicka-Jasińska, K.; Szurmak, J.; Gryko, D. J. Org. Chem. 2019, 84, 15834. |
| [10] | Guo, W.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2021, 60, 4085 |
| [11] | Forster, D.; Guo, W.; Wang, Q.; Zhu, J. ACS Catal. 2021, 11, 10871. |
| [12] | Ma, T.-C.; Yao, S.; Qiao, M.-M.; Yuan, F.; Shi, D.-Q.; Xiao, W.-J. Org. Chem. Front. 2021, 8, 4224. |
| [13] | Zhang, J. H.; Xiao, T. F.; Ji, Z. Q.; Chen, H. N.; Yan, P. J.; Luo, Y. C.; Xu, P. F.; Xu, G. Q. Chem. Commun. 2022, 58, 2882. |
| [14] | Yu, W. L.; Jiang, H. W.; Yan, L.; Feng, Z. T.; Luo, Y. C.; Xu, P. F. Sci. China: Chem. 2021, 64, 274. |
| [15] | Wang, Y.-Z.; Lin, W.-J.; Liu, H.-C.; Yu, W. Org. Chem. Front. 2022, 9, 2164. |
| [16] | Shi, C.; Guo, L.; Gao, H.; Luo, M.; Yang, C.; Xia, W. Org. Lett. 2022, 24, 4365. |
| [17] | Wang, Y.-Z.; Liang, P.-Y.; Liu, H.-C.; Lin, W.-J.; Zhou, P.-P.; Yu, W. Org. Lett. 2022, 24, 6037. |
| [18] | Shin, S.; Lee, S.; Choi, W.; Kim, N.; Hong, S. Angew. Chem., Int. Ed. 2021, 60, 7873. |
/
| 〈 |
|
〉 |