综述与进展

N-胺基吡啶盐作为氮自由基前体在可见光诱导碳氮键形成反应中的进展

  • 杨少慧 ,
  • 宋敬城 ,
  • 董道青 ,
  • 杨昊 ,
  • 周梦宇 ,
  • 张会淑 ,
  • 王祖利
展开
  • 青岛农业大学化学与药学院 山东青岛 266109
共同第一作者

收稿日期: 2022-07-08

  修回日期: 2022-08-26

  网络出版日期: 2022-10-10

基金资助

国家自然科学基金(21772107)

Progress of N-Amino Pyridinium Salts as Nitrogen Radical Precursors in Visible Light Induced C—N Bond Formation Reactions

  • Shaohui Yang ,
  • Jingcheng Song ,
  • Daoqing Dong ,
  • Hao Yang ,
  • Mengyu Zhou ,
  • Huishu Zhang ,
  • Zuli Wang
Expand
  • College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109
These authors contributed equally to this work.

Received date: 2022-07-08

  Revised date: 2022-08-26

  Online published: 2022-10-10

Supported by

National Natural Science Foundation of China(21772107)

摘要

由于吡啶盐的氧化还原性质, 人们发现稳定的吡啶盐在自由基化学中起着重要作用. 吡啶盐容易经历单电子还原和N—N键断裂以传递N自由基. 综述了近三年来N-胺基吡啶盐作为氮自由基前驱体在可见光诱导碳氮键形成反应中的研究进展. 根据反应底物的不同, 综述分为三个部分: 与芳烃的反应、与烯烃的反应及与烷烃的反应.

本文引用格式

杨少慧 , 宋敬城 , 董道青 , 杨昊 , 周梦宇 , 张会淑 , 王祖利 . N-胺基吡啶盐作为氮自由基前体在可见光诱导碳氮键形成反应中的进展[J]. 有机化学, 2022 , 42(12) : 4099 -4110 . DOI: 10.6023/cjoc202207019

Abstract

Because of the redox properties of pyridine salt, it is found that N-amino pyridine salt plays an important role in free radical chemistry. N-Amino pyridinium salts easily undergo single electron reduction and N—N bond fragmentation to deliver N radicals. In this review, the advances of N-amino pyridinium salt serves as a powerful nitrogen radical precursor in visible light induced reactions for C—N bond formation are summarized in the last three years. According to the reaction substrates, the review is divided into three parts: react with arenes, react with olefins, and react with alkanes.

参考文献

[1]
(a) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871.
[1]
(b) Qin, F.-H.; Huang, X.-J.; Liu, Y.; Liang, H.; Li, Q.; Cao, Z.; Wei, W.-T.; He, W.-M. Chin. Chem. Lett. 2020, 31, 3267.
[1]
(c) Han, Q.-Q.; Chen, D.-M.; Wang, Z.-L.; Sun, Y.-Y.; Yang, S.-H.; Song, J.-C.; Dong, D.-Q. Chin. Chem. Lett. 2021, 32, 2559.
[1]
(d) Yue, B. T.; Wu, X. X.; Zhu, C. Chin. J. Org. Chem. 2022, 42, 458. (in Chinese)
[1]
( 乐柏佟, 吴新鑫, 朱晨, 有机化学, 2022, 42, 458.)
[1]
(e) Pillitteri, S.; Ranjan, P.; Van der Eycken, E. V.; Sharma, U. K. Adv. Synth. Catal. 2022, 364, 1643.
[1]
(f) Chen, N.; Lei, J.; Wang, Z. C.; Liu, Y. J.; Sun, K.; Tang, S. Chin. J. Org. Chem. 2022, 42, 1061. (in Chinese)
[1]
( 陈宁, 雷佳, 王智传, 刘颖杰, 孙凯, 唐石, 有机化学, 2022, 42, 1061.)
[1]
(g) Han, Q. Q.; Sun, Y. Y.; Yang, S. H.; Song, J. C.; Wang, Z. L. Chin. Chem. Lett. 2021, 32, 3632.
[2]
(a) Wei, W.-T.; Li, Q.; Zhang, M.-Z.; He, W.-M. Chin. J. Catal. 2021, 42, 731.
[2]
(b) Yang, W.-C.; Chen, C.-Y.; Li, J.-F.; Wang, Z.-L. Chin. J. Catal. 2021, 42, 1865.
[2]
(c) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2017, 56, 1960.
[2]
(d) Ham, W. S.; Hillenbrand, J.; Jacq, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2019, 58, 532.
[2]
(e) Liu, W.-D.; Xu, G.-Q.; Hu, X.-Q.; Xu, P.-F. Org. Lett. 2017, 19, 6288.
[2]
(f) Miyazawa, K.; Koike, T.; Akita, M. Tetrahedron 2016, 72, 7813.
[2]
(g) Vellakkaran, M.; Kim, T.; Hong, S. Angew. Chem., Int. Ed. 2022, 61, e202113658.
[2]
(h) Moon, Y.; Park, B.; Kim, I.; Kang, G.; Shin, S.; Kang, D.; Baik, M.-H.; Hong, S. Nat. Commun. 2019, 10, 4117.
[2]
(i) R?ssler, S. L.; Jelier, B. J.; Tripet, P. F.; Shemet, A.; Jeschke, G.; Togni, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2019, 58, 526.
[3]
(a) Wang, Y.; Bao, Y.; Tang, M.; Ye, Z.; Yuan, Z.; Zhu, G. Chem. Commun. 2022, 58, 3847.
[3]
(b) Sowmiah, S.; Esperan?a, J. M. S. S.; Rebelo, L. P. N.; Afonso, C. A. M. Org. Chem. Front. 2018, 5, 453.
[3]
(c) Rossler, S. L.; Jelier, B. J.; Magnier, E.; Dagousset, G.; Carreira, E. M.; Togni, A. Angew. Chem., Int. Ed. 2020, 59, 9264.
[3]
(d) He, F.-S.; Ye, S.; Wu, J. ACS Catal. 2019, 9, 8943.
[4]
Greulich, T. W.; Daniliuc, C. G.; Studer, A. Org. Lett. 2015, 17, 254.
[5]
Yang, Z.; Cao, K.; Peng, X.; Lin, L.; Fan, D.; Li, J. L.; Wang, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Chem. 2021, 39, 3347.
[6]
Miyazawa, K.; Koike, T.; Akita, M. Chem.-Eur. J. 2015, 21, 11677.
[7]
Mo, J.-N.; Yu, W.-L.; Chen, J.-Q.; Hu, X.-Q.; Xu, P.-F. Org. Lett. 2018, 20, 4471.
[8]
Yu, W.-L.; Chen, J.-Q.; Wei, Y.-L.; Wang, Z.-Y.; Xu, P.-F. Chem. Commun. 2018, 54, 1948.
[9]
Goliszewska, K.; Rybicka-Jasińska, K.; Szurmak, J.; Gryko, D. J. Org. Chem. 2019, 84, 15834.
[10]
Guo, W.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2021, 60, 4085
[11]
Forster, D.; Guo, W.; Wang, Q.; Zhu, J. ACS Catal. 2021, 11, 10871.
[12]
Ma, T.-C.; Yao, S.; Qiao, M.-M.; Yuan, F.; Shi, D.-Q.; Xiao, W.-J. Org. Chem. Front. 2021, 8, 4224.
[13]
Zhang, J. H.; Xiao, T. F.; Ji, Z. Q.; Chen, H. N.; Yan, P. J.; Luo, Y. C.; Xu, P. F.; Xu, G. Q. Chem. Commun. 2022, 58, 2882.
[14]
Yu, W. L.; Jiang, H. W.; Yan, L.; Feng, Z. T.; Luo, Y. C.; Xu, P. F. Sci. China: Chem. 2021, 64, 274.
[15]
Wang, Y.-Z.; Lin, W.-J.; Liu, H.-C.; Yu, W. Org. Chem. Front. 2022, 9, 2164.
[16]
Shi, C.; Guo, L.; Gao, H.; Luo, M.; Yang, C.; Xia, W. Org. Lett. 2022, 24, 4365.
[17]
Wang, Y.-Z.; Liang, P.-Y.; Liu, H.-C.; Lin, W.-J.; Zhou, P.-P.; Yu, W. Org. Lett. 2022, 24, 6037.
[18]
Shin, S.; Lee, S.; Choi, W.; Kim, N.; Hong, S. Angew. Chem., Int. Ed. 2021, 60, 7873.
文章导航

/