研究论文

蓝光诱导的1,3-二酮C(CO)—C键卡宾插入反应

  • 巴聃 ,
  • 程国林
展开
  • a 华侨大学材料科学与工程学院 分析测试中心 厦门市光电材料及其先进制造重点实验室 福建厦门 361021
    b 三峡大学材料与化工学院 湖北宜昌 443002

收稿日期: 2022-01-26

  修回日期: 2022-05-28

  网络出版日期: 2022-06-08

基金资助

国家自然科学基金(22071068)

Blue Light Induced Insertion of Carbene into C(CO)—C Bonds of 1,3-Diones

  • Dan Ba ,
  • Guolin Cheng
Expand
  • a Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, the Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021
    b School of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002
* Corresponding author. E-mail:

Received date: 2022-01-26

  Revised date: 2022-05-28

  Online published: 2022-06-08

Supported by

National Natural Science Foundation of China(22071068)

摘要

可见光诱导被认为是绿色化学合成中的理想“工具”. 可见光诱导的反应具有条件温和、设备简单及副产物少等优点, 逐渐发展成为有机合成领域重要的方法之一. 报道了蓝光诱导溴化锂促进的重氮酸酯卡宾插入1,3-二酮底物C(CO)—C键的反应, 合成了一系列含全碳季碳中心的1,4-二酮化合物. 该合成方法具有良好的底物普适性和官能团兼容性, 是一种理想高效的1,4-二酮化合物合成策略.

本文引用格式

巴聃 , 程国林 . 蓝光诱导的1,3-二酮C(CO)—C键卡宾插入反应[J]. 有机化学, 2022 , 42(9) : 2888 -2897 . DOI: 10.6023/cjoc202201045

Abstract

Visible light is an ideal “tool” for the green chemical synthesis. Visible light-induced reactions show such advantages as mild reaction conditions, simple equipments and less by-products. Therefore, it has gradually become an important method in organic synthesis. Herein an blue light induced LiBr-promoted carbene insertion reaction of diazoesters into C(CO)—C bonds of 1,3-diones for the synthesis of a wide range of all-carbon quaternary center-containing 1,4-dione derivatives is reported. The method features good substrate universality and functional group compatibility, and therefore is an ideal and efficient strategy for the synthesis of 1,4-diones.

参考文献

[1]
(a) Ertl, P.; Schuhmann, T. J. Nat. Prod. 2019, 82, 1258.
[1]
(b) Walter, M. W. Nat. Prod. Rep. 2002, 19, 278.
[2]
(a) Navale, B. S.; Laha, D.; Bhat, R. G. Tetrahedron Lett. 2019, 60, 1899.
[2]
(b) Ren, Y.-Y.; Mao, H.-X.; Hu, M.-Y.; Zhu, S.-F.; Zhou, Q.-L. ChemCatChem 2020, 12, 4267.
[2]
(c) Wu, Y.; He, X.; Xie, M.; Li, R.; Ning, Y.; Duan, J.; Zhang, E.; Shang, Y. J. Org. Chem. 2021, 86, 7370.
[2]
(d) Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 9817.
[3]
(a) Liu, Z.; Sivaguru, P.; Zanoni, G.; Anderson, E. A.; Bi, X. Angew. Chem., Int. Ed. 2018, 57, 8927.
[3]
(b) Liu, Z.; Zhang, X.; Virelli, M.; Zanoni, G.; Anderson, E. A.; Bi, X. iScience 2018, 8, 54.
[3]
(c) Cao, S.; Liu, Z.; Yuan, H.; Yang, L.; Zhang, J.; Bi, X. Chin. J. Org. Chem. 2020, 40, 2468. (in Chinese)
[3]
(曹姗姗, 刘兆洪, 袁海艳, 杨柳, 张景萍, 毕锡和, 有机化学, 2020, 40, 2468.)
[3]
(d) Ning, Y.; Song, Q.; Sivaguru, P.; Wu, L.; Anderson, E. A.; Bi, X. Org. Lett. 2022, 24, 631.
[4]
Luo, K.; Mao, S.; He, K.; Yu, X.; Pan, J.; Lin, J.; Shao, Z.; Jin, Y. ACS Catal. 2020, 10, 3733.
[5]
Ba, D.; Wen, S.; Tian, Q.; Chen, Y.; Lv, W.; Cheng, G. Nat. Commun. 2020, 11, 4219.
[6]
Wen, S.; Lv, W.; Ba, D.; Liu, J.; Cheng, G. Chem. Sci. 2019, 10, 9104.
[7]
(a) Yang, Z.; Stivanin, M. L.; Jurberg, I. D.; Koenigs, R.M. Chem. Soc. Rev. 2020, 49, 6833.
[7]
(b) Ciszewski, Ł. W.; Rybicka-Jasińska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
[8]
(a) Empel, C.; Patureau, F. W.; Koenigs, R. M. J. Org. Chem. 2019, 84, 11316.
[8]
(b) Okada, C. Y.; dos Santos, C. Y.; Jurberg, I. D. Tetrahedron 2020, 76, 131316.
[8]
(c) Empel, C.; Jana, S.; Pei, C.; Nguyen, T. V.; Koenigs, R. M. Org. Lett. 2020, 22, 7225.
[8]
(d) Qi, Z.; Wang, S. Org. Lett. 2021, 23, 8549.
[8]
(e) Qin, L.-Z.; Yuan, X.; Cui, Y.-S.; Sun, Q.; Duan, X.; Zhuang, K.-Q.; Chen, L.; Qiu, J.-K.; Guo, K. Adv. Synth. Catal. 2020, 362, 5093.
[8]
(f) Yang, J.; Wang, G.; Chen, S.; Ma, B.; Zhou, H.; Song, M.; Liu, C.; Huo, C. Org. Biomol. Chem. 2020, 18, 9494.
[8]
(g) He, F.; Li, F.; Koenigs, R. M. J. Org. Chem. 2020, 85, 1240.
[9]
(a) Orłowska, K.; Rybicka-Jasińska, K.; Krajewski, P.; Gryko, D. Org. Lett. 2020, 22, 1018.
[9]
(b) Jana, S.; Koenigs, R. M. Asian J. Org. Chem. 2019, 8, 683.
[9]
(c) Yang, J.; Wang, J.; Huang, H.; Qin, G.; Jiang, Y.; Xiao, T. Org. Lett. 2019, 21, 2654.
[9]
(d) Yang, Z.; Guo, Y.; Koenigs, R. M. Chem.-Eur. J. 2019, 25, 6703.
[9]
(e) Jana, S.; Yang, Z.; Pei, C.; Xu, X.; Koenigs, R. M. Chem. Sci. 2019, 10, 10129.
[10]
(a) He, F.; Koenigs, R. M. Chem. Commun. 2019, 55, 4881.
[10]
(b) Guo, Y.; Nguyen, T. V.; Koenigs, R. M. Org. Lett. 2019, 21, 8814.
[10]
(c) Jurberg, I. D.; Davies, H. M. L. Chem. Sci. 2018, 9, 5112.
[10]
(d) Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R. M. Angew. Chem., Int. Ed. 2019, 58, 1203.
[10]
(e) Ye, C.; Cai, B.-G.; Lu, J.; Cheng, X.; Li, L.; Pan, Z.-W.; Xuan, J. J. Org. Chem. 2021, 86, 1012.
[10]
(f) Xiao, T.; Mei, M.; He, Y.; Zhou, L. Chem. Commun. 2018, 54, 8865.
[11]
(a) Ye, C.; Cai, B.-G.; Lu, J.; Cheng, X.; Li, L.; Pan, Z.-W.; Xuan, J. J. Org. Chem. 2021, 86, 1012.
[11]
(b) Xiao, T.; Mei, M.; He, Y.; Zhou, L. Chem. Commun. 2018, 54, 8865.
[12]
Wen, S.; Tian, Q.; Chen, Y.; Zhang, Y.; Cheng, G. Org. Lett. 2021, 23, 7407.
[13]
Gallo, R. D. C.; Duarte, M.; da Silva, A. F.; Okada, C. Y.; Deflon, V. M.; Jurberg, I. D. Org. Lett. 2021, 23, 8916.
[14]
Keipour, H.; Ollevier, T. Org. Lett. 2017, 19, 5736.
[15]
Howard, J.-L.; Sagatov, Y.; Repusseau, L.; Schotten, C.; Browne, D.-L. Green Chem. 2017, 19, 2798.
[16]
(a) Peng, S.; Lin, Y.-W.; He, W.-M. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
[16]
(彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
[16]
(b) Wang, Z.; Liu, Q.; Ji, X.; Deng, G.-J.; Huang, H. ACS Catal. 2020, 10, 154.
[16]
(c) Ji, X.; Liu, Q.; Wang, Z.; Wang, P.; Deng, G.-J.; Huang, H. Green Chem. 2020, 22, 8233.
文章导航

/