研究论文

α-氰醇甲磺酸酯与丙二酸酯的亲核取代反应合成α-芳基腈类化合物

  • 王雷刚 ,
  • 郑逸轩 ,
  • 周希 ,
  • 王海峰 ,
  • 严琼姣 ,
  • 汪伟 ,
  • 陈芬儿
展开
  • a 武汉工程大学药物研究院 武汉 430205
    b 复旦大学化学学院 上海 200433

收稿日期: 2022-08-23

  修回日期: 2022-10-03

  网络出版日期: 2022-11-01

基金资助

国家自然科学基金(21602144); 湖北省教育厅科研计划(Q20211503)

Synthesis of α-Aryl Nitriles via Nucleophilic Substitution of α-Cyanohydrin Methanesulfonates with Malonates

  • Leigang Wang ,
  • Yixuan Zheng ,
  • Xi Zhou ,
  • Haifeng Wang ,
  • Qiongjiao Yan ,
  • Wei Wang ,
  • Fener Chen
Expand
  • a Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205
    b Department of Chemistry, Fudan University, Shanghai 200433
* Corresponding authors. E-mail: ;

Received date: 2022-08-23

  Revised date: 2022-10-03

  Online published: 2022-11-01

Supported by

National Natural Science Foundation of China(21602144); Scientific Research Project of Education Department of Hubei Province(Q20211503)

摘要

报道了无过渡金属存在下α-氰醇甲磺酸酯与丙二酸酯的亲核取代反应. 该方法的原料廉价易得, 操作简便, 反应条件温和, 具有良好的底物适用性和官能团兼容性, 以较好的产率得到了一系列重要的丙二酸酯取代的α-芳基腈类化合物. 更重要的是, 该方法也适用于非对称的丙二酸酯和酰基酯类底物.

本文引用格式

王雷刚 , 郑逸轩 , 周希 , 王海峰 , 严琼姣 , 汪伟 , 陈芬儿 . α-氰醇甲磺酸酯与丙二酸酯的亲核取代反应合成α-芳基腈类化合物[J]. 有机化学, 2023 , 43(2) : 668 -678 . DOI: 10.6023/cjoc202208029

Abstract

An efficient synthesis of α-aryl nitriles via nucleophilic substitution of α-cyanohydrin methanesulfonates with malonates is developed. This transition metal-free protocol has the advantages of cheap and easily available starting materials, mild reaction conditions, simple operation, a broad substrate scope and high functional group tolerance. Furthermore, this strategy could also be used to asymmetric malonates and acyl esters.

参考文献

[1]
(a) Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597.
[1]
(b) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
[1]
(c) Wang, J.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1643. (in Chinese)
[1]
(王江, 柳红, 有机化学, 2012, 32, 1643.)
[1]
(d) Cohen, D. T.; Buchwald, S. L. Org. Lett. 2015, 17, 202.
[1]
(e) Yan, G.; Zhang, Y.; Wang, J. Adv. Synth. Catal. 2017, 359, 4068.
[1]
(f) Que, X.; Qiu, Z.; Yan, Y. High Perform. Polym. 2019, 31, 1062.
[2]
(a) Daw, P.; Sinha, A.; Rahaman, S. M. W.; Dinda, S.; Bera, J. K. Organometallics 2012, 31, 3790.
[2]
(b) Kumar, S.; Dixit, S. K.; Awasthi, S. K. Tetrahedron Lett. 2014, 55, 3802.
[2]
(c) Tomás-Mendivil, E.; Suárez, F. J.; Díez, J.; Cadierno, V. Chem. Commun. 2014, 50, 9661.
[2]
(d) Manikandan, R.; Anitha, P.; Prakash, G.; Vijayan, P.; Viswanathamurthi, P.; Butcher, R. J.; Malecki, J. G. J. Mol. Catal. A: Chem. 2015, 398, 312.
[2]
(e) Marcé, P.; Lynch, J.; Blacker, A. J.; Williams, J. M. J. Chem. Commun. 2016, 52, 1436.
[2]
(f) Singh, K.; Sarbajna, A.; Dutta, I.; Pandey, P.; Bera, J. K. Chem. Eur. J. 2017, 23, 7761.
[2]
(g) Ji, P.; Manna, K.; Lin, Z.; Feng, X.; Urban, A.; Song, Y.; Lin, W. J. Am. Chem. Soc. 2017, 139, 7004.
[2]
(h) Paul, A.; Chandak, H. S.; Ma, L.; Seidel, D. Org. Lett. 2020, 22, 976.
[2]
(i) Li, C.; Chang, X.-Y.; Huo, L.; Tan, H.; Xing, X.; Xu, C. ACS Catal. 2021, 11, 8716.
[2]
(j) Tong, S.; Li, K.; Ouyang, X.; Song, R.; Li, J. Green Synth. Catal. 2021, 2, 145.
[3]
Jackson, T.; Woo, L. W. L.; Trusselle, M. N.; Chander, S. K.; Purohit, A.; Reed, M. J.; Potter, B. V. L. Org. Biomol. Chem. 2007, 5, 2940.
[4]
Teodori, E.; Dei, S.; Garnier-Suillerot, A.; Gualtieri, F.; Manetti, D.; Martelli, C.; Romanelli, M. N.; Scapecchi, S.; Sudwan, P.; Salerno, M. J. Med. Chem. 2005, 48, 7426.
[5]
Noble, S.; McTavish, D. Drugs 1995, 50, 1032.
[6]
Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9330.
[7]
Jiao, Z.; Chee, K. W.; Zhou, J. S. J. Am. Chem. Soc. 2016, 138, 16240.
[8]
Qian, X.; Han, J.; Wang, L. Adv. Synth. Catal. 2016, 358, 940.
[9]
He, A.; Falck, J. R. J. Am. Chem. Soc. 2010, 132, 2524.
[10]
Nambo, M.; Yar, M.; Smith, J. D.; Crudden, C. M. Org. Lett. 2015, 17, 50.
[11]
Choi, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 9102.
[12]
Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2015, 137, 10480.
[13]
(a) Wheeler, C.; West, K. N.; Liotta, C. L.; Eckert, C. A. Chem. Commun. 2001, 887.
[13]
(b) Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2003, 68, 4281.
[14]
Ratani, T. S.; Bachman, S.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2015, 137, 13902.
[15]
Chen, G.; Wang, Z.; Wu, J.; Ding, K. Org. Lett. 2008, 10, 4573.
[16]
Shirsath, S. R.; Shinde, G. H.; Shaikh, A. C.; Muthukrishnan, M. J. Org. Chem. 2018, 83, 12305.
[17]
Liu, S.; Meng, L.; Zeng, X.; Hammond, G. B.; Xu, B. Chin. J. Chem. 2021, 39, 913.
[18]
(a) Ambro?ak, A.; Steinebach, C.; Gardner, E. R.; Beedie, S. L.; Schnakenburg, G.; Figg, W. D.; Gütschow, M. ChemMedChem 2016, 11, 2621.
[18]
(b) Singh, A.; Hakk, H.; Lupton, S. J. J. Labelled Compd. Radiopharm. 2018, 61, 386.
[18]
(c) Wang, L.-L.; Battini, N.; Bheemanaboina, R. R. Y.; Zhang, S.-L.; Zhou, C.-H. Eur. J. Med. Chem. 2019, 167, 105.
[19]
(a) Kiledal, S. A.; Jourdain, R.; Vellalath, S.; Romo, D. Org. Lett. 2021, 23, 6622.
[19]
(b) Cheng, F.; Chen, T.; Huang, Y.-Q.; Li, J.-W.; Zhou, C.; Xiao, X.; Chen, F.-E. Org. Lett. 2022, 24, 115.
[19]
(c) Moghadam, F. A.; Hicks, E. F.; Sercel, Z. P.; Cusumano, A. Q.; Bartberger, M. D.; Stoltz, B. M. J. Am. Chem. Soc. 2022, 144, 7983.
[19]
(d) Wu, J.; Young, C. M.; Watts, A. A.; Slawin, A. M. Z.; Boyce, G. R.; Bühl, M.; Smith, A. D. Org. Lett. 2022, 24, 4040.
[19]
(e) Cochrane, S. R.; Kerr, M. A. Org. Lett. 2022, 24, 5509.
[20]
(a) Ueda, M.; Nishimura, K.; Ryu, I. Synlett 2013, 24, 1683.
[20]
(b) Wu, G.; Xu, S.; Deng, Y.; Wu, C.; Zhao, X.; Ji, W.; Zhang, Y.; Wang, J. Tetrahedron 2016, 72, 8022.
[20]
(c) Li, C.; Zhang, Y.; Sun, Q.; Gu, T.; Peng, H.; Tang, W. J. Am. Chem. Soc. 2016, 138, 10774.
文章导航

/