综述与进展

全碳体系的5-endo-Trig自由基环化反应研究进展

  • 郑汉良 ,
  • 苏静雯 ,
  • 周雨露 ,
  • 朱钢国
展开
  • 浙江师范大学化学系 先进催化材料教育部重点实验室 浙江金华 321004

收稿日期: 2022-09-24

  修回日期: 2022-10-13

  网络出版日期: 2022-11-01

基金资助

国家自然科学基金(22071218); 国家自然科学基金(22203076)

Recent Advances on 5-endo-Trig Radical Cyclization of All-Carbon Systems

  • Hanliang Zheng ,
  • Jingwen Su ,
  • Yulu Zhou ,
  • Gangguo Zhu
Expand
  • Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry,Zhejiang Normal University, Jinhua, Zhejiang 321004

Received date: 2022-09-24

  Revised date: 2022-10-13

  Online published: 2022-11-01

Supported by

National Natural Science Foundation of China(22071218); National Natural Science Foundation of China(22203076)

摘要

5-endo-trig自由基环化是快速构筑五元环的理想方法之一. Baldwin-Beckwith规则指出, 受立体电子效应影响, 5-endo-trig自由基环化通常是动力学不利的. 近年来, 化学工作者一直致力于探索促进5-endo-trig自由基环化的新策略, 以期发展高效、高选择性的五元碳环或杂环化合物的合成方法. 综述了4-戊烯基自由基5-endo环化的最新进展, 总结归纳了主要的促进策略, 希望推动5-endo-trig自由基环化反应的进一步设计和发展.

本文引用格式

郑汉良 , 苏静雯 , 周雨露 , 朱钢国 . 全碳体系的5-endo-Trig自由基环化反应研究进展[J]. 有机化学, 2022 , 42(12) : 4060 -4066 . DOI: 10.6023/cjoc202209029

Abstract

The 5-endo-trig radical closure has emerged as an ideal method for the fast aseembly of five-membered rings. It is believed to be kinetically disfavored due to the stereoelectronic disadvantages, so it is recognized as a disfavored process according to the Baldwin-Beckwith rules. Despite the challenges, continuous efforts have been devoted to develop effective strategies that enable 5-endo-trig radical cyclization. The recent advances on 5-endo-trig closure of 4-pentenyl radicals are summarized and the common strategies for accelerating the cyclization are analyzed, which will be valuable for the design and development of novel radical 5-endo-trig processes.

参考文献

[1]
For selected reviews, see: (a) Roche, S. P.; Aitken, D. J. Eur. J. Org. Chem. 2010, 2010, 5339.
[1]
(b) Brian, H. Curr. Org. Chem. 2014, 18, 641.
[1]
(c) Wang, Y.; Yu, Z.-X. Acc. Chem. Res. 2015, 48, 2288.
[1]
(d) Simeonov, S. P.; Nunes, J. P. M.; Guerra, K.; Kurteva, V. B.; Afonso, C. A. M. Chem. Rev. 2016, 116, 5744.
[1]
For recent examples, see: (e) Su, X.; Chen, B.; Wang, S.; Chen, H.; Chen, C. ACS Catal. 2018, 8, 7760.
[1]
(f) Zhao, Q.-Q.; Zhou, X.-S.; Xu, S.-H.; Wu, Y.-L.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2020, 22, 2470.
[1]
(g) Chai, W.; Zhou, Q.; Ai, W.; Zheng, Y.; Qin, T.; Xu, X.; Zi, W. J. Am. Chem. Soc. 2021, 143, 3595.
[1]
(h) Tang, N.; Xu, Y.; Niu, T.; Yang, S.; Dong, H.; Wu, X.; Zhu, C. Org. Chem. Front. 2021, 8, 3118.
[1]
(i) Ding, Z.; Liu, Z.; Wang, Z.; Yu, T.; Xu, M.; Wen, J.; Yang, K.; Zhang, H.; Xu, L.; Li, P. J. Am. Chem. Soc. 2022, 144, 8870.
[1]
(j) Kumar, M.; Verma, S.; Mishra, V.; Reiser, O.; Verma, A. K. J. Org. Chem. 2022, 87, 6263.
[1]
(k) Meng, F.-T.; Chen, J.-L.; Qin, X.-Y.; Zhang, T.-S.; Tu, S.-J.; Jiang, B.; Hao, W.-J. Org. Chem. Front. 2022, 9, 140.
[1]
(l) Meng, F.-T.; Qin, X.-Y.; Li, J.; Zhang, T.-S.; Tu, S.-J.; Jiang, B.; Hao, W.-J. Chin. J. Chem. 2022, 40, 687.
[2]
For selected reviews, see: (a) Xu, C.-H.; Li, Y.; Li, J.-H.; Xiang, J.-N.; Deng, W. Sci. China Chem. 2019, 62, 1463.
[2]
(b) Liao, J.; Yang, X.; Ouyang, L.; Lai, Y.; Huang, J.; Luo, R. Org. Chem. Front. 2021, 8, 1345.
[3]
For selected reviews, see: (a) Dénès, F.; Beaufils, F.; Renaud, P. Synlett 2008, 2389.
[3]
(b) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
[3]
(d) Deepthi, A.; Sathi, V.; Nair, V. Tetrahedron Lett. 2018, 59, 2767.
[3]
(e) Yue, B.; Wu, X.; Zhu, C. Chin. J. Org. Chem. 2022, 42, 458. (in Chinese)
[3]
( 乐柏佟, 吴新鑫, 朱晨, 有机化学, 2022, 42, 458.)
[4]
(a) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc., Chem. Commun. 1976, 736.
[4]
(b) Beckwith, A. L. J.; Easton, C. J.; Serelis, A. K. J. Chem. Soc., Chem. Commun. 1980, 482.
[4]
(c) Chatgilialoglu, C.; Ferreri, C.; Guerra, M.; Timokhin, V.; Froudakis, G.; Gimisis, T. J. Am. Chem. Soc. 2002, 124, 10765.
[5]
(a) Bürgi, H. B.; Dunitz, J. D.; Lehn, J. M.; Wipff, G. Tetrahedron 1974, 30, 1563.
[5]
(b) Bürgi, H. B.; Dunitz, J. D. Acc. Chem. Res. 1983, 16, 153.
[6]
Ishibashi, H.; Sato, T.; Ikeda, M. Synthesis 2002, 695.
[7]
(a) Chatgilialoglu, C.; Ferreri, C.; Guerra, M.; Timokhin, V.; Froudakis, G.; Gimisis, T. J. Am. Chem. Soc. 2002, 124, 10765.
[7]
(b) Alabugin, I. V.; Timokhin, V. I.; Abrams, J. N.; Manoharan, M.; Abrams, R.; Ghiviriga, I. J. Am. Chem. Soc. 2008, 130, 10984.
[7]
(c) Alabugin, I. V.; Gilmore, K.; Manoharan, M. J. Am. Chem. Soc. 2011, 133, 12608.
[7]
(d) Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513.
[7]
(e) Gilmore, K.; Mohamed, R. K.; Alabugin, I. V. Wires Comput. Mol. Sci. 2016, 6, 487.
[7]
(f) Huang, M.; Jia, Z.; Luo, S.; Cheng, J.-P. Chin. J. Org. Chem. 2021, 41, 3892. (in Chinese)
[7]
( 黄谋新, 贾宗宾, 罗三中, 程津培, 有机化学, 2021, 41, 3892.)
[8]
Bogen, S.; Gulea, M.; Fensterbank, L.; Malacria, M. J. Org. Chem. 1999, 64, 4920.
[9]
Bogen, S.; Goddard, J.-P.; Fensterbank, L.; Malacria, M. ARKIVOC 2008, 126.
[10]
For selected reviews, see: (a) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
[10]
(b) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.
[10]
(c) Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. Chem. Sci. 2020, 11, 12974.
[10]
(d) Guo, W.; Wang, Q.; Zhu, J. Chem. Soc. Rev. 2021, 50, 7359.
[10]
(e) Wu, X.; Zhu, C. Trends. Chem. 2022, 4, 580.
[11]
Hu, M.; Fan, J.-H.; Liu, Y.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Angew. Chem. Int. Ed. 2015, 54, 9577.
[12]
Qiu, J.-K.; Jiang, B.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Sun, J.; Wei, P.; Tu, S.-J.; Li, G. J. Am. Chem. Soc. 2015, 137, 8928.
[13]
Jiang, B.; Li, J.; Pan, Y.; Hao, W.; Li, G.; Tu, S. Chin. J. Chem. 2017, 35, 323.
[14]
Hu, M.; Zou, H.-X.; Song, R.-J.; Xiang, J.-N.; Li, J.-H. Org. Lett. 2016, 18, 6460.
[15]
Gao, F.; Yang, C.; Ma, N.; Gao, G.-L.; Li, D.; Xia, W. Org. Lett. 2016, 18, 600.
[16]
Hu, M.; Song, R.-J.; Ouyang, X.-H.; Tan, F.-L.; Wei, W.-T.; Li, J.-H. Chem. Commun. 2016, 52, 3328.
[17]
Li, Y.; Liu, B.; Song, R.-J.; Wang, Q.-A.; Li, J.-H. Adv. Synth. Catal. 2016, 358, 1219.
[18]
Qu, Y.; Xu, W.; Zhang, J.; Liu, Y.; Li, Y.; Song, H.; Wang, Q. J. Org. Chem. 2020, 85, 5379.
[19]
Li, J.; Hao, W.-J.; Zhou, P.; Zhu, Y.-L.; Wang, S.-L.; Tu, S.-J.; Jiang, B. RSC Adv. 2017, 7, 9693.
[20]
Jiao, M.-J.; Liu, D.; Hu, X.-Q.; Xu, P.-F. Org. Chem. Front. 2019, 6, 3834.
[21]
Correia, J. T. M.; Piva da Silva, G.; André, E.; Paix?o, M. W. Adv. Synth. Catal. 2019, 361, 5558.
[22]
Liu, H.-Y.; Lu, Y.; Li, Y.; Li, J.-H. Org. Lett. 2020, 22, 8819.
[23]
Yu, J.-X.; Teng, F.; Xiang, J.-N.; Deng, W.; Li, J.-H. Org. Lett. 2019, 21, 9434.
[24]
?imek, M.; Bártová, K.; Pohl, R.; Císa?ová, I.; Jahn, U. Angew. Chem. Int. Ed. 2020, 59, 6160.
[25]
Zhou, Y.; Qin, Y.; Wang, Q.; Zhang, Z.; Zhu, G. Angew. Chem. Int. Ed. 2022, 61, e202110864.
[26]
For selected reviews, see: (a) Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
[26]
(b) Parsaee, F.; Senarathna, M. C.; Kannangara, P. B.; Alexander, S. N.; Arche, P. D. E.; Welin, E. R. Nat. Rev. Chem. 2021, 5, 486.
[27]
(a) Le, S.; Bai, Y.; Qiu, J.; Zhang, Z.; Zheng, H.; Zhu, G. Org. Chem. Front. 2022, 9, 4670.
[27]
(b) Qiu, J.; Le, S.; Su, J.; Liu, Y.; Zhou, Y.; Zheng, H.; Bai, Y.; Zhu, G. Org. Chem. Front. 2022, 9, 5523.
[28]
Le, S.; Li, J.; Feng, J.; Zhang, Z.; Bai, Y.; Yuan, Z.; Zhu, G. Nat. Commun. 2022, 13, 4734.
文章导航

/