全碳体系的5-endo-Trig自由基环化反应研究进展
收稿日期: 2022-09-24
修回日期: 2022-10-13
网络出版日期: 2022-11-01
基金资助
国家自然科学基金(22071218); 国家自然科学基金(22203076)
Recent Advances on 5-endo-Trig Radical Cyclization of All-Carbon Systems
Received date: 2022-09-24
Revised date: 2022-10-13
Online published: 2022-11-01
Supported by
National Natural Science Foundation of China(22071218); National Natural Science Foundation of China(22203076)
5-endo-trig自由基环化是快速构筑五元环的理想方法之一. Baldwin-Beckwith规则指出, 受立体电子效应影响, 5-endo-trig自由基环化通常是动力学不利的. 近年来, 化学工作者一直致力于探索促进5-endo-trig自由基环化的新策略, 以期发展高效、高选择性的五元碳环或杂环化合物的合成方法. 综述了4-戊烯基自由基5-endo环化的最新进展, 总结归纳了主要的促进策略, 希望推动5-endo-trig自由基环化反应的进一步设计和发展.
关键词: 自由基; 5-endo-trig环化; 五元环; 构象限制; 极性效应
郑汉良 , 苏静雯 , 周雨露 , 朱钢国 . 全碳体系的5-endo-Trig自由基环化反应研究进展[J]. 有机化学, 2022 , 42(12) : 4060 -4066 . DOI: 10.6023/cjoc202209029
The 5-endo-trig radical closure has emerged as an ideal method for the fast aseembly of five-membered rings. It is believed to be kinetically disfavored due to the stereoelectronic disadvantages, so it is recognized as a disfavored process according to the Baldwin-Beckwith rules. Despite the challenges, continuous efforts have been devoted to develop effective strategies that enable 5-endo-trig radical cyclization. The recent advances on 5-endo-trig closure of 4-pentenyl radicals are summarized and the common strategies for accelerating the cyclization are analyzed, which will be valuable for the design and development of novel radical 5-endo-trig processes.
| [1] | For selected reviews, see: (a) Roche, S. P.; Aitken, D. J. Eur. J. Org. Chem. 2010, 2010, 5339. |
| [1] | (b) Brian, H. Curr. Org. Chem. 2014, 18, 641. |
| [1] | (c) Wang, Y.; Yu, Z.-X. Acc. Chem. Res. 2015, 48, 2288. |
| [1] | (d) Simeonov, S. P.; Nunes, J. P. M.; Guerra, K.; Kurteva, V. B.; Afonso, C. A. M. Chem. Rev. 2016, 116, 5744. |
| [1] | For recent examples, see: (e) Su, X.; Chen, B.; Wang, S.; Chen, H.; Chen, C. ACS Catal. 2018, 8, 7760. |
| [1] | (f) Zhao, Q.-Q.; Zhou, X.-S.; Xu, S.-H.; Wu, Y.-L.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2020, 22, 2470. |
| [1] | (g) Chai, W.; Zhou, Q.; Ai, W.; Zheng, Y.; Qin, T.; Xu, X.; Zi, W. J. Am. Chem. Soc. 2021, 143, 3595. |
| [1] | (h) Tang, N.; Xu, Y.; Niu, T.; Yang, S.; Dong, H.; Wu, X.; Zhu, C. Org. Chem. Front. 2021, 8, 3118. |
| [1] | (i) Ding, Z.; Liu, Z.; Wang, Z.; Yu, T.; Xu, M.; Wen, J.; Yang, K.; Zhang, H.; Xu, L.; Li, P. J. Am. Chem. Soc. 2022, 144, 8870. |
| [1] | (j) Kumar, M.; Verma, S.; Mishra, V.; Reiser, O.; Verma, A. K. J. Org. Chem. 2022, 87, 6263. |
| [1] | (k) Meng, F.-T.; Chen, J.-L.; Qin, X.-Y.; Zhang, T.-S.; Tu, S.-J.; Jiang, B.; Hao, W.-J. Org. Chem. Front. 2022, 9, 140. |
| [1] | (l) Meng, F.-T.; Qin, X.-Y.; Li, J.; Zhang, T.-S.; Tu, S.-J.; Jiang, B.; Hao, W.-J. Chin. J. Chem. 2022, 40, 687. |
| [2] | For selected reviews, see: (a) Xu, C.-H.; Li, Y.; Li, J.-H.; Xiang, J.-N.; Deng, W. Sci. China Chem. 2019, 62, 1463. |
| [2] | (b) Liao, J.; Yang, X.; Ouyang, L.; Lai, Y.; Huang, J.; Luo, R. Org. Chem. Front. 2021, 8, 1345. |
| [3] | For selected reviews, see: (a) Dénès, F.; Beaufils, F.; Renaud, P. Synlett 2008, 2389. |
| [3] | (b) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329. |
| [3] | (d) Deepthi, A.; Sathi, V.; Nair, V. Tetrahedron Lett. 2018, 59, 2767. |
| [3] | (e) Yue, B.; Wu, X.; Zhu, C. Chin. J. Org. Chem. 2022, 42, 458. (in Chinese) |
| [3] | ( 乐柏佟, 吴新鑫, 朱晨, 有机化学, 2022, 42, 458.) |
| [4] | (a) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc., Chem. Commun. 1976, 736. |
| [4] | (b) Beckwith, A. L. J.; Easton, C. J.; Serelis, A. K. J. Chem. Soc., Chem. Commun. 1980, 482. |
| [4] | (c) Chatgilialoglu, C.; Ferreri, C.; Guerra, M.; Timokhin, V.; Froudakis, G.; Gimisis, T. J. Am. Chem. Soc. 2002, 124, 10765. |
| [5] | (a) Bürgi, H. B.; Dunitz, J. D.; Lehn, J. M.; Wipff, G. Tetrahedron 1974, 30, 1563. |
| [5] | (b) Bürgi, H. B.; Dunitz, J. D. Acc. Chem. Res. 1983, 16, 153. |
| [6] | Ishibashi, H.; Sato, T.; Ikeda, M. Synthesis 2002, 695. |
| [7] | (a) Chatgilialoglu, C.; Ferreri, C.; Guerra, M.; Timokhin, V.; Froudakis, G.; Gimisis, T. J. Am. Chem. Soc. 2002, 124, 10765. |
| [7] | (b) Alabugin, I. V.; Timokhin, V. I.; Abrams, J. N.; Manoharan, M.; Abrams, R.; Ghiviriga, I. J. Am. Chem. Soc. 2008, 130, 10984. |
| [7] | (c) Alabugin, I. V.; Gilmore, K.; Manoharan, M. J. Am. Chem. Soc. 2011, 133, 12608. |
| [7] | (d) Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513. |
| [7] | (e) Gilmore, K.; Mohamed, R. K.; Alabugin, I. V. Wires Comput. Mol. Sci. 2016, 6, 487. |
| [7] | (f) Huang, M.; Jia, Z.; Luo, S.; Cheng, J.-P. Chin. J. Org. Chem. 2021, 41, 3892. (in Chinese) |
| [7] | ( 黄谋新, 贾宗宾, 罗三中, 程津培, 有机化学, 2021, 41, 3892.) |
| [8] | Bogen, S.; Gulea, M.; Fensterbank, L.; Malacria, M. J. Org. Chem. 1999, 64, 4920. |
| [9] | Bogen, S.; Goddard, J.-P.; Fensterbank, L.; Malacria, M. ARKIVOC 2008, 126. |
| [10] | For selected reviews, see: (a) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654. |
| [10] | (b) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569. |
| [10] | (c) Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. Chem. Sci. 2020, 11, 12974. |
| [10] | (d) Guo, W.; Wang, Q.; Zhu, J. Chem. Soc. Rev. 2021, 50, 7359. |
| [10] | (e) Wu, X.; Zhu, C. Trends. Chem. 2022, 4, 580. |
| [11] | Hu, M.; Fan, J.-H.; Liu, Y.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Angew. Chem. Int. Ed. 2015, 54, 9577. |
| [12] | Qiu, J.-K.; Jiang, B.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Sun, J.; Wei, P.; Tu, S.-J.; Li, G. J. Am. Chem. Soc. 2015, 137, 8928. |
| [13] | Jiang, B.; Li, J.; Pan, Y.; Hao, W.; Li, G.; Tu, S. Chin. J. Chem. 2017, 35, 323. |
| [14] | Hu, M.; Zou, H.-X.; Song, R.-J.; Xiang, J.-N.; Li, J.-H. Org. Lett. 2016, 18, 6460. |
| [15] | Gao, F.; Yang, C.; Ma, N.; Gao, G.-L.; Li, D.; Xia, W. Org. Lett. 2016, 18, 600. |
| [16] | Hu, M.; Song, R.-J.; Ouyang, X.-H.; Tan, F.-L.; Wei, W.-T.; Li, J.-H. Chem. Commun. 2016, 52, 3328. |
| [17] | Li, Y.; Liu, B.; Song, R.-J.; Wang, Q.-A.; Li, J.-H. Adv. Synth. Catal. 2016, 358, 1219. |
| [18] | Qu, Y.; Xu, W.; Zhang, J.; Liu, Y.; Li, Y.; Song, H.; Wang, Q. J. Org. Chem. 2020, 85, 5379. |
| [19] | Li, J.; Hao, W.-J.; Zhou, P.; Zhu, Y.-L.; Wang, S.-L.; Tu, S.-J.; Jiang, B. RSC Adv. 2017, 7, 9693. |
| [20] | Jiao, M.-J.; Liu, D.; Hu, X.-Q.; Xu, P.-F. Org. Chem. Front. 2019, 6, 3834. |
| [21] | Correia, J. T. M.; Piva da Silva, G.; André, E.; Paix?o, M. W. Adv. Synth. Catal. 2019, 361, 5558. |
| [22] | Liu, H.-Y.; Lu, Y.; Li, Y.; Li, J.-H. Org. Lett. 2020, 22, 8819. |
| [23] | Yu, J.-X.; Teng, F.; Xiang, J.-N.; Deng, W.; Li, J.-H. Org. Lett. 2019, 21, 9434. |
| [24] | ?imek, M.; Bártová, K.; Pohl, R.; Císa?ová, I.; Jahn, U. Angew. Chem. Int. Ed. 2020, 59, 6160. |
| [25] | Zhou, Y.; Qin, Y.; Wang, Q.; Zhang, Z.; Zhu, G. Angew. Chem. Int. Ed. 2022, 61, e202110864. |
| [26] | For selected reviews, see: (a) Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25. |
| [26] | (b) Parsaee, F.; Senarathna, M. C.; Kannangara, P. B.; Alexander, S. N.; Arche, P. D. E.; Welin, E. R. Nat. Rev. Chem. 2021, 5, 486. |
| [27] | (a) Le, S.; Bai, Y.; Qiu, J.; Zhang, Z.; Zheng, H.; Zhu, G. Org. Chem. Front. 2022, 9, 4670. |
| [27] | (b) Qiu, J.; Le, S.; Su, J.; Liu, Y.; Zhou, Y.; Zheng, H.; Bai, Y.; Zhu, G. Org. Chem. Front. 2022, 9, 5523. |
| [28] | Le, S.; Li, J.; Feng, J.; Zhang, Z.; Bai, Y.; Yuan, Z.; Zhu, G. Nat. Commun. 2022, 13, 4734. |
/
| 〈 |
|
〉 |