研究论文

纯水及空气中芳香羧酸和丙烯酸酯氧化偶联构筑苯酞的绿色方法

  • 魏文婷 ,
  • 李壮壮 ,
  • 李婉迪 ,
  • 李嘉琪 ,
  • 石先莹
展开
  • 陕西师范大学化学化工学院 陕西省合成气转化重点实验室 西安 710119

收稿日期: 2022-08-25

  修回日期: 2022-10-12

  网络出版日期: 2022-11-08

基金资助

国家自然科学基金(22178214); 国家自然科学基金(21776171)

Green Method for Constructing Phthalides via Oxidative Coupling of Aromatic Acids and Acrylates in Neat Water and Air

  • Wenting Wei ,
  • Zhuangzhuang Li ,
  • Wandi Li ,
  • Jiaqi Li ,
  • Xianying Shi
Expand
  • Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119
* Corresponding author. E-mail:

Received date: 2022-08-25

  Revised date: 2022-10-12

  Online published: 2022-11-08

Supported by

National Natural Science Foundation of China(22178214); National Natural Science Foundation of China(21776171)

摘要

苯酞是一类重要的杂环化合物, 广泛存在于药物和天然产物中, 其合成备受关注. 本研究发展了一种水促进、铑催化芳香酸和丙烯酸酯通过[3+2]串联环化反应构筑苯酞的绿色方法, 反应在空气和纯水介质中进行, 无需任何添加剂. 与文献相比, 该方法具有反应条件方便、操作简单、无添加剂等特点. 机理研究表明, 催化循环中, 除了外部氧化剂氧化Rh(I)外, 还包含丙烯酸酯作为氢受体的氢转移过程使活性Rh(III)再生, 这一机理与文献报道的金属催化苯酞的合成机理不同. 利用该方法, 可一步合成具有生物活性的(4-羟基-3-氧亚基-1,3-二氢异苯并呋喃-1-基)乙酸.

本文引用格式

魏文婷 , 李壮壮 , 李婉迪 , 李嘉琪 , 石先莹 . 纯水及空气中芳香羧酸和丙烯酸酯氧化偶联构筑苯酞的绿色方法[J]. 有机化学, 2023 , 43(3) : 1177 -1186 . DOI: 10.6023/cjoc202208034

Abstract

Phthalides represent an important class of bioactive heterocycle extensively found in pharmaceuticals and natural products, their syntheses have attracted extensively attention. A water-promoted and rhodium-catalyzed [3+2] tandem cyclization of aromatic acids and acrylates has been developed in air and neat water free of any additives, which provides an environmentally benign approach for constructing phthalide motifs. Compared with previous literatures, this methodology features quite simple reaction conditions, simple operation and additive-free. Mechanistic studies indicate that apart from the many other well-known oxidations of Rh(I) by external oxidant, hydrogen transfer with the acrylate being a hydrogen acceptor is involved to regenerate the active Rh species, which is different from documented metal-catalyzed phthalides syntheses. The application of this protocol is further demonstrated by the green synthesis of biologically active isoochracinic acid in one step.

参考文献

[1]
(a) Davies, H. M. L.; Morton, D. J. J. Org. Chem. 2016, 81, 343.
[1]
(b) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
[1]
(c) Wedi, P.; van Gemmeren, M. Angew. Chem., Int. Ed. 2018, 57, 13016.
[1]
(d) Zhang, Y.-F.; Shi, Z.-J. Acc. Chem. Res. 2019, 52, 161.
[2]
(a) Yang, Y.; Li, K.; Cheng, Y.; Wan, D.; Li, M.; You, J. Chem. Commun. 2016, 52, 2872.
[2]
(b) Wan, J.-P.; Li, Y.; Liu, Y. Org. Chem. Front. 2016, 3, 768.
[2]
(c) Mao, G.-L.; Huang, Q.; Wang, C.-Y. Eur. J. Org. Chem. 2017, 3549.
[2]
(d) Zheng, L.; Hua, R. Chem. Rec. 2018, 18, 556.
[2]
(e) Dutta, C.; Choudhury, J. RSC Adv. 2018, 8, 27881.
[2]
(f) Duarah, G.; Kaishap, P. P.; Begum, T.; Gogoi, S. Adv. Synth. Catal. 2019, 361, 654.
[2]
(g) Song, L.; Van der Eycken, E. V. Chem.-Eur. J. 2021, 27, 121.
[3]
(a) Velasco-Rubio, á.; Varela, J. A.; Saá, C. Adv. Synth. Catal. 2020, 362, 4861.
[3]
(b) Manikandan, R.; Jeganmohan, M. Chem. Commun. 2017, 53, 8931.
[4]
(a) Zhang, L.-B.; Lv, J.-L.; Liu, J.-W. J. Nat. Prod. 2016, 79, 1857.
[4]
(b) Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213.
[4]
(c) Lin, G.; Chan, S. S.-K.; Chung, H.-S.; Li, S.-L. Stud. Nat. Prod. Chem. 2005, 32, 611.
[4]
(d) Beck, J. J.; Chou, S.-C. J. Nat. Prod. 2007, 70, 891.
[4]
(e) Li, Q.; Jiang, L.; Bai, R.; Han, Y.; Li, Z. Chin. J. Org. Chem. 2021, 41, 3390. (in Chinese)
[4]
(李泉城, 姜岚, 白瑞, 韩永康, 李争宁, 有机化学, 2021, 41, 3390.)
[5]
(a) H?ller, U.; Gloer, J. B.; Wicklow, D. T. B. J. Nat. Prod. 2002, 65, 876.
[5]
(b) Choi, P. J.; Sperry, J.; Brimble, M. A. J. Org. Chem. 2010, 75, 7388.
[5]
(c) Pan, Y.-L.; Zheng, H.-L.; Wang, J.; Yang, C.; Li, X.; Cheng, J.-P. ACS Catal. 2020, 10, 8069.
[6]
Orfali, R. S.; Ebrahim, W.; El-Shafae, A. M. Chem. Nat. Comp. 2017, 53, 1031.
[7]
(a) Li, G. Z.; Jiang, J. J.; Xie. H.; Wang, J. Chem.-Eur. J. 2019, 25, 4688.
[7]
(b) Mandal, A.; Mehta, G.; Dana, S.; Baidya, M. Org. Lett. 2019, 21, 5879.
[7]
(c) Jia, B.; Yang, Y. H.; Jin, X. Q.; Mao, G. L.; Wang, C. Y. Org. Lett. 2019, 21, 6259.
[7]
(d) Liang, X. M.; Xiong, T.; Zhu, H. P.; Shi, K. Q.; Zhou, Y. F.; Pan, Y. J. Org. Lett. 2020, 22, 9568.
[7]
(e) Wang, R.; Xu, H.; Li, T.; Zhang, Y.; Wang, S.; Chen, G.; Li, C.; Zhao, H. ChemCatChem 2020, 12, 5907.
[7]
(f) Wang, S.; Miao, E.; Wang, H.; Song, B.; Huang. W.; Yang, W. Chem. Commun. 2021, 57, 5929.
[7]
(g) Baruah, S.; Sultana, S.; Bhorali, P.; Saikia, P.; Gogoi, S. Org. Biomol. Chem. 2021, 19, 2997.
[7]
(h) Yin, F.; Peng, W.; Wang, C.; Qu, L.; Chen, X.; Kong, L.; Wang, X. Asian J. Org. Chem. 2022, e202200024.
[8]
(a) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153.
[8]
(b) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.
[8]
(c) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407.
[8]
(d) Zhao, H.; Zhang, T.; Yan, T.; Cai, M. J. Org. Chem. 2015, 80, 8849.
[8]
(e) Zhu, Y.-Q.; Li, J.-X.; Han, T.-F.; He, J.-L.; Zhu, K. Eur. J. Org. Chem. 2017, 2017, 806.
[8]
(f) Breit, B.; Maurer, D. Chem.-Eur. J. 2021, 27, 2643.
[9]
(a) Qiu, Y.; Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 14179.
[9]
(b) Qiu, Y.; Kong, W.-J.; Struwe, J.; Sauermann, N.; Rogge, T.; Scheremetjew, A.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5828.
[9]
(c) Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaa?, C.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 264.
[9]
(d) Bechtoldt, A.; Baumert, M. E.; Vaccaro, L.; Ackermann, L. Green Chem. 2018, 20, 398.
[9]
(e) Choi, I.; Messinis, A. M.; Hou, X.; Ackermann, L. Angew. Chem., Int. Ed. 2021, 60, 27005.
[9]
(f) Jiang, Q.; Zhu, C.; Zhao, H.; Su, W. Chem.-Asian J. 2016, 11, 356.
[9]
(g) Dana, S.; Dey, P.; Patil, S. A.; Baidya, M. Chem.-Asian J. 2020, 15, 564.
[10]
(a) Li, X.-R.; Li, W.-D.; Wei, W.-T.; Fan, J.; Liu, Z.-W.; Shi, X.-Y. Asian J. Org. Chem. 2022, 11, e202100725.
[10]
(b) Fan, J.; Wang, P.-M.; Wang, J.-N.; Zhao, X.; Liu, Z.-W.; Wei, J.-F.; Shi, X.-Y. Sci. China: Chem. 2018, 61, 153.
[10]
(c) Han, W.-J.; Pu, F.; Fan, J.; Liu, Z.-W.; Shi, X.-Y. Adv. Synth. Catal. 2017, 359, 3520.
[10]
(d) Pu, F.; Liu, Z.-W.; Zhang, L.-Y.; Fan, J.; Shi, X.-Y. ChemCatChem 2019, 11, 4116.
[11]
(a) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302.
[11]
(b) Kitanosono, T.; Kobayashi, S. Chem.-Eur. J. 2020, 26, 9408.
[11]
(c) Ali, M. A.; Yao, X.; Li, G.; Lu, H. Org. Lett. 2016, 18, 1386.
[12]
(a) Liu, J.; Miotto, R. J.; Segard, J.; Erb, A. M.; Aponick, A. Org. Lett. 2018, 20, 3034.
[12]
(b) De Silva, S. O.; Reed, J. N.; Billedeau, R. J.; Wang, X.; Norris, D. J.; Snieckus, V. Tetrahedron 1992, 4863.
[12]
(c) Hosoya, T.; Kuriyama, Y.; Suzuki, K. Synlett 1995, 635.
[12]
(d) Fan, Y. C.; Kwon, O. Org. Lett. 2012, 14, 3264.
[13]
(a) Li, T.; Zhou, C.; Yan, X. Q.; Wang, J. S. Angew. Chem., Int. Ed. 2018, 57, 4048.
[13]
(b) Tian, M. M.; Zheng, G. F.; Fan, X.; Li, X. W. J. Org. Chem. 2018, 83, 6477.
[14]
(a) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066.
[14]
(b) Xia, Y.; Liu, Z.; Feng, S.; Zhang, Y.; Wang, J. J. Org. Chem. 2015, 80, 223.
[14]
(c) Upadhyay, N. S.; Thorat, V. H.; Sato, R.; Annamalai, P.; Chuang, S.-C.; Cheng, C.-H. Green Chem. 2017, 19, 3219.
[15]
(a) Kudo, E.; Shibata, Y.; Yamazaki, M.; Masutomi, K.; Miyauchi, Y.; Fukui, M.; Sugiyama, H.; Uekusa, H.; Satoh, T.; Miura, M.; Tanaka, K. Chem.-Eur. J. 2016, 22, 14190.
[15]
(b) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem.-Eur. J. 2015, 21, 9198.
[16]
(a) Zhou, X.; Sun, J.; Li, X. Chin. J. Catal. 2018, 39, 1782.
[16]
(b) Meng, K.; Sun, Y.; Zhang, J.; Zhang, K.; Ji, X.; Ding, L.; Zhong, G. Org. Lett. 2019, 21, 8219.
文章导航

/