综述与进展

基于自由基串联环化反应合成苯并吖庚因衍生物的研究进展

  • 肖潜 ,
  • 佟庆笑 ,
  • 钟建基
展开
  • a 韩山师范学院化学与环境工程学院 广东潮州 521041
    b 汕头大学化学系 广东省有序结构材料的制备与应用重点实验室 广东汕头 515063

收稿日期: 2022-09-19

  修回日期: 2022-10-17

  网络出版日期: 2022-11-08

基金资助

国家自然科学基金(22171177); 国家自然科学基金(51973107)

Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions

  • Qian Xiao ,
  • Qing-Xiao Tong ,
  • Jian-Ji Zhong
Expand
  • a School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041
    b Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou, Guangdong 515063

Received date: 2022-09-19

  Revised date: 2022-10-17

  Online published: 2022-11-08

Supported by

National Natural Science Foundation of China(22171177); National Natural Science Foundation of China(51973107)

摘要

苯并吖庚因骨架衍生物是一类重要的七元含氮杂环化合物, 广泛存在于天然产物和药物分子中, 具有多样的生物活性. 因此, 开发绿色、高效的苯并吖庚因骨架衍生物合成方法备受关注. 近年来, 自由基参与的串联环化反应凭借其独特的优势已逐渐发展成为构建该类骨架化合物的一种强有力工具. 根据不同的反应驱动力, 从光化学、电化学和热化学三方面系统地概括了近五年来通过自由基串联环化反应制备苯并吖庚因骨架衍生物的研究进展.

本文引用格式

肖潜 , 佟庆笑 , 钟建基 . 基于自由基串联环化反应合成苯并吖庚因衍生物的研究进展[J]. 有机化学, 2022 , 42(12) : 3979 -3994 . DOI: 10.6023/cjoc202209025

Abstract

Benzazepines are a kind of important seven-membered nitrogen-containing heterocyclic compounds, which are extensively exisited in natural products and pharmaceuticals, and have versatile biological activity. Therefore, great attention has been focused on the green and efficient synthesis of the benzazepines. In recent years, radical cascade cyclization reactions have gradually been developed as a powerful tool for the construction of benzazepines owing to their unique advantages. In this minireview, according to the different driving force of reaction, the research progress on the synthesis of benzazepines by radical cascade cyclization reactions in the past five years is systematically summarized in terms of photochemical reactions, electrochemical reactions and thermochemical reactions.

参考文献

[1]
Lebegue, N.; Gallet, S.; Flouquet, N.; Carato, P.; Pfeiffer, B.; Renard, P.; Léonce, S.; Pierré, A.; Chavatte, P.; Berthelot, P. J. Med. Chem. 2005, 48, 7363.
[2]
Gilleron, P.; Wlodarczyk, N.; Houssin, R.; Farce, A.; Laconde, G.; Goossens, J.-F.; Lemoine, A.; Pommery, N.; Hénichart, J.-P.; Millet, R. Bioorg. Med. Chem. Lett. 2007, 17, 5465.
[3]
Srinivasa Rao, D. V. N.; Dandala, R.; Handa, V. K.; Sivakumaran, M.; Raghava Reddy, A. V.; Naidu, A. Org. Prep. Proced. Int. 2007, 39, 399.
[4]
Al-Qawasmeh, R. A.; Lee, Y.; Cao, M.-Y.; Gu, X.; Viau, S.; Lightfoot, J.; Wright, J. A.; Young, A. H. Bioorg. Med. Chem. Lett. 2009, 19, 104.
[5]
Aoyama, A.; Endo-Umeda, K.; Kishida, K.; Ohgane, K.; Noguchi- Yachide, T.; Aoyama, H.; Ishikawa, M.; Miyachi, H.; Makishima, M.; Hashimoto, Y. J. Med. Chem. 2012, 55, 7360.
[6]
Watthey, J. W. H.; Stanton, J. L.; Desai, M.; Babiarz, J. E.; Finn, B. M. J. Med. Chem. 1985, 28, 1511.
[7]
O’Grady, M. R.; O’Sullivan, M. L.; Minors, S. L.; Horne, R. J. Vet. Intern. Med. 2009, 23, 977.
[8]
ter Laak, A. M.; Venhorst, J.; Donne-Op den Kelder, G. M.; Timmerman, H. J. Med. Chem. 1995, 38, 3351.
[9]
Wagstaff, A. J.; Ormrod, D.; Spencer, C. M. CNS Drugs 2001, 15, 231.
[10]
Gassaway, M. M.; Rives, M.-L.; Kruegel, A. C.; Javitch, J. A.; Sames, D. Transl. Psychiatry 2014, 4, e411.
[11]
Yang, B. H.; Buchwald, S. L. Org. Lett. 1999, 1, 35.
[12]
Merten, S.; Fr?hlich, R.; Kataeva, O.; Metz, P. Adv. Synth. Catal. 2005, 347, 754.
[13]
Cao, H.; Vieira, T. O.; Alper, H. Org. Lett. 2011, 13, 11.
[14]
Roszkowski, P.; Maurin, J. K.; Czarnocki, Z. Beilstein J. Org. Chem. 2015, 11, 1509.
[15]
Samineni, R.; Bandi, C. R. C.; Srihari, P.; Mehta, G. Org. Lett. 2016, 18, 6184.
[16]
Snider, B. B. Chem. Rev. 1996, 96, 339.
[17]
Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
[18]
Sun, K.; Wang, X.; Li, C.; Wang, H.; Li, L. Org. Chem. Front. 2020, 7, 3100.
[19]
Liao, J.; Yang, X.; Ouyang, L.; Lai, Y.; Huang, J.; Luo, R. Org. Chem. Front. 2021, 8, 1345.
[20]
Zhou, X.; Zhang, A.; Zhang, Q.; Liu, Q.; Xuan, J. Chin. J. Org. Chem. 2022, 42, 2488. (in Chinese)
[20]
( 周旭煜, 张爱君, 张庆庆, 刘庆安, 宣俊, 有机化学, 2022, 42, 2488.)
[21]
Chen, B.; Wu, L. Z.; Tung, C. H. Acc. Chem. Res. 2018, 51, 2512.
[22]
Guo, W.; Tao, K.; Tan, W.; Zhao, M.; Zheng, L.; Fan, X. Org. Chem. Front. 2019, 6, 2048.
[23]
Zhang, H.; Xiao, Q.; Qi, X.-K.; Gao, X.-W.; Tong, Q.-X.; Zhong, J.-J. Chem. Commun. 2020, 56, 12530.
[24]
Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066.
[25]
Xiao, Q.; Zhang, H.; Li, J.-H.; Jian, J.-X.; Tong, Q.-X.; Zhong, J.-J. Org. Lett. 2021, 23, 3604.
[26]
Bell, J. D.; Murphy, J. A. Chem. Soc. Rev. 2021, 50, 9540.
[27]
Lu, F.-D.; Chen, J.; Jiang, X.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2021, 50, 12808.
[28]
Yu, X.; Chen, J.; Xiao, W. Chem. Rev. 2021, 121, 506.
[29]
Yin, Y.; Zhao, X.; Jiang, Z. Chin. J. Org. Chem. 2022, 42, 1609. (in Chinese)
[29]
( 尹艳丽, 赵筱薇, 江智勇, 有机化学, 2022, 42, 1609.)
[30]
Xiao, Q.; Tong, Q.-X.; Zhong, J.-J. Molecules 2022, 27, 619.
[31]
Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 224.
[32]
Qi, X.-K.; Zhang, H.; Pan, Z.-T.; Liang, R.-B.; Zhu, C.-M.; Li, J.-H.; Tong, Q.-X.; Gao, X.-W.; Wu, L.-Z.; Zhong, J.-J. Chem. Commun. 2019, 55, 10848.
[33]
Liu, D.; Jiao, M.-J.; Wang, X.-Z.; Xu, P.-F. Org. Lett. 2019, 21, 4745.
[34]
Zhang, T.; Luo, M.; Teng, F.; Li, Y.; Hu, M.; Li, J. Adv. Synth. Catal. 2019, 361, 4645.
[35]
Yao, Y.; Yin, Z.; He, F.-S.; Qin, X.; Xie, W.; Wu, J. Chem. Commun. 2021, 57, 2883.
[36]
Qu, C.; Song, G.; Ou, J.; Tang, D.; Xu, Z.; Chen, Z. Chin. J. Chem. 2021, 39, 2220.
[37]
Zhou, N.; Kuang, K.; Wu, M.; Wu, S.; Xia, Z.; Xu, Q.; Zhang, M. Org. Chem. Front. 2021, 8, 4095.
[38]
Li, J.; Huang, C.-Y.; Han, J.-T.; Li, C.-J. ACS Catal. 2021, 11, 14148.
[39]
Wang, L.; Zhang, Y.; Zhu, T.; Wu, J. J. Org. Chem. 2022, 87, 7551.
[40]
Xiao, Q.; Lu, M.; Deng, Y.; Jian, J.-X.; Tong, Q.-X.; Zhong, J.-J. Org. Lett. 2021, 23, 9303.
[41]
Zheng, X.; Shen, Q.; Yin, C.; Li, L.; Zhong, T.; Yu, C. Adv. Synth. Catal. 2022, 364, 1750.
[42]
Chen, S.; Yan, Q.; Fan, J.; Gao, Y.; Yang, X.; Li, L.; Liu, Z.; Li, Z. Green Chem. 2022, 24, 4742.
[43]
Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
[44]
Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[45]
Chen, N.; Xu, H. Chem. Rec. 2021, 21, 2306.
[46]
Liu, Y.; Wang, Z.; Meng, J.; Li, C.; Sun, K. Chin. J. Org. Chem. 2022, 42, 100. (in Chinese)
[46]
( 刘颖杰, 王智传, 孟建萍, 李晨, 孙凯, 有机化学, 2022, 42, 100.)
[47]
Li, Y.; Hu, M.; Li, J.-H. ACS Catal. 2017, 7, 6757.
[48]
Li, Y.; Li, J.-H. Org. Lett. 2018, 20, 5323.
[49]
Pan, G.-A.; Li, Y.; Li, J.-H. Org. Chem. Front. 2020, 7, 2486.
[50]
Zhang, Z.-Q.; Xu, Y.-H.; Dai, J.-C.; Li, Y.; Sheng, J.; Wang, X.-S. Org. Lett. 2021, 23, 2194.
[51]
Chen, X.; Pei, C.; Liu, B.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Chem. Commun. 2022, 1.
[52]
Ren, Y.; Yan, Q.; Li, Y.; Gao, Y.; Zhao, J.; Li, L.; Liu, Z.-Q.; Li, Z. J. Org. Chem. 2022, 87, 8773.
[53]
Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
文章导航

/