自由基介导的串联环化反应构建七元含氮/氧杂环化合物
收稿日期: 2022-09-26
修回日期: 2022-10-24
网络出版日期: 2022-11-08
基金资助
国家自然科学基金(21901006)
Radical-Mediated Tandem Cyclization to Construct Seven-Membered Nitrogen/Oxygen Heterocycles
Received date: 2022-09-26
Revised date: 2022-10-24
Online published: 2022-11-08
Supported by
National Natural Science Foundation of China(21901006)
赵晓伟 , 夏紫琴 , 张曼 , 周能能 . 自由基介导的串联环化反应构建七元含氮/氧杂环化合物[J]. 有机化学, 2022 , 42(12) : 3995 -4023 . DOI: 10.6023/cjoc202209032
Owing to the special chemical structure of the seven-membered heterocyclic skeleton and the unique chemical properties of the heteroatoms contained, it is widely used in natural products and drug molecules. However, the development of synthetic methodology for these structures is challenging due to the unique thermodynamic and kinetic characteristics of nitrogen/oxygen-containing seven-membered heterocyclic frameworks, as well as their own unique cross-ring forces. Therefore, it is of great significance to develop simple and efficient methods for the construction of seven-membered heterocyclic compounds. Compared with traditional synthetic methods, radical reactions can avoid the limitations of poor atom economy and harsh reaction conditions. In this review, the recent synthetic strategies for the construction of seven-membered nitrogen/oxygen-containing heterocyclic compounds using radical tandem cyclization reactions are summarized.
| [1] | Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G. W.; Kobayashi, T.; Stevens, R. C.; Iwata, S. Nature 2011, 475, 65. |
| [2] | Watthey, J. W. H.; Stanton, J. L.; Desai, M.; Babiarz, J. E.; Finn, B. M. J. Med. Chem. 1985, 28, 1511. |
| [3] | Berecz, G.; Dancsó, A.; Németh, D. R.; Kiss, L.; Simig, G.; Volk, B. Synthesis 2022, 54, 3874. |
| [4] | Kumari, P.; Liu, W.; Wang, C. J.; Dai, J.; Wang, M. X.; Yang, Q. Q.; Deng, Y. H.; Shao, Z. Chin. J. Chem. 2020, 38, 151. |
| [5] | Li, X.-H.; Zhang, Z.-L.; Fan, H.-F.; Miao, Y.-L.; Tian, H.-L.; Gu, Y.-C.; Gui, J.-H. J. Am. Chem. Soc. 2021, 143, 4886. |
| [6] | Battiste, M. A.; Pelphrey, P. M.; Wright, D. L. Chem.-Eur. J. 2006, 12, 3438. |
| [7] | Yu, X.-C.; Zhang, C.-C.; Wang, L.-T.; Li, J.-Z.; Li, T.; Wei, W.-T. Org. Chem. Front. 2022, 9, 4757. |
| [8] | Naito, T.; Tajiri, K.; Harimoto, T.; Ninomiya, I.; Kiguchi, T. Tetrahedron Lett. 1994, 35, 2205. |
| [9] | Naito, T.; Nakagawa, K.; Nakamura, T.; Kasei, A.; Ninomiya, I.; Kiguchi, T. J. Org. Chem. 1999, 64, 2003. |
| [10] | Miyabe, H.; Torieda, M.; Inoue, K.; Tajiri, K.; Kiguchi, T.; Naito, T. J. Org. Chem. 1998, 63, 4397. |
| [11] | Kaoudi, T.; Quiclet-Sire, B.; Seguin, S.; Zard, S. Z. Angew. Chem., Int. Ed. 2000, 39, 731. |
| [12] | Alcaide, B.; Almendros, P.; Aragoncillo, C. J. Org. Chem. 2001, 66, 1612. |
| [13] | Alcaide, B.; Almendros, P.; Aragoncillo, C. Org. Lett. 2003, 5, 3795. |
| [14] | Schulte, T.; Studer, A. Macromolecules 2003, 36, 3078. |
| [15] | Andrukiewicz, R.; Loska, R.; Prisyahnyuk, V.; Staliński, K. J. Org. Chem. 2003, 68, 1552. |
| [16] | Taniguchi, T.; Ishita, A.; Uchiyama, M.; Tamura, O.; Muraoka, O.; Tanabe, G.; Ishibashi, H. J. Org. Chem. 2005, 70, 1922. |
| [17] | Lang, S.; Corr, M.; Muir, N.; Khan, T. A.; Sch?nebeck, F.; Murphy, J. A.; Payne, A. H.; Williams, A. C. Tetrahedron Lett. 2005, 46, 4027. |
| [18] | Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C. J. Org. Chem. 2007, 72, 1604. |
| [19] | O’Connell, J. M.; Moriarty, E.; Aldabbagh, F. Synthesis 2012, 44, 3371. |
| [20] | Liu, Z.-B.; Qin, L.; Zard, S. Z. Org. Lett. 2012, 14, 5976. |
| [21] | Bhakuni, B. S.; Kumar, A.; Balkrishna, S. J.; Sheikh, J. A.; Konar, S.; Kumar, S. Org. Lett. 2012, 14, 2838. |
| [22] | Wang, H.-P.; Wang, B.-B.; Sun, S.; Cheng, J. Org. Chem. Front. 2013, 5, 2547. |
| [23] | Coyle, R.; Fahey, K.; Aldabbagh, F. Org. Biomol. Chem. 2013, 11, 1672. |
| [24] | Yu, L.-Z.; Xu, Q.; Tang, X.-Y.; Shi, M. ACS Catal. 2015, 6, 526. |
| [25] | Hua, H.-L.; Zhang, B.-S.; He, Y.-T.; Qiu, Y.-F.; Wu, X.-X.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2016, 18, 216. |
| [26] | Hua, H.-L.; Zhang, B.-S.; He, Y.-T.; Qiu, Y.-F.; Hu, J.-Y.; Yang, Y.-C.; Liang, Y.-M. Chem. Commun. 2016, 52, 10396. |
| [27] | Li, Y.; Hu, M.; Li, J.-H. ACS Catal. 2017, 7, 6757. |
| [28] | Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2017, 20, 224. |
| [29] | Xiong, P.; Xu, H.-H.; Song, J.-S.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460. |
| [30] | Qi, X.-K.; Zhang, H.; Pan, Z.-T.; Liang, R.-B.; Zhu, C.-M.; Li, J.-H.; Tong, Q.-X.; Gao, X.-W.; Wu, L.-Z.; Zhong, J.-J. Chem. Commun. 2019, 55, 10848. |
| [31] | Chen, M.-T.; Wei, Y.; Shi, M. Org. Chem. Front. 2019, 7, 374. |
| [32] | Zhang, H.-W.; Tian, P.-Y.; Ma, L.-S.; Zhou, Y.-L.; Jiang, C.-Y.; Lin, X.-F.; Xiao, X. Org. Lett. 2020, 22, 997. |
| [33] | Ohuchi, S.; Koyama, H.; Shigehisa, H. ACS Catal. 2021, 11, 900. |
| [34] | Qu, C.-H.; Song, G.-T.; Ou, J.-H.; Tang, D.-Y.; Xu, Z.-G.; Chen, Z.-Z. Chin. J. Chem. 2021, 39, 2220. |
| [35] | Zhang, Z.-Q.; Xu, Y.-H.; Dai, J.-C.; Li, Y.; Sheng, J.; Wang, X.-S. Org. Lett. 2021, 23, 2194. |
| [36] | Xiao, Q.; Lu, M.-J.; Deng, Y.-L.; Jian, J.-X.; Tong, Q.-X.; Zhong, J.-J. Org. Lett. 2021, 23, 9303. |
| [37] | Ren, Y.-M.; Yan, Q.-Q.; Li, Y.; Gao, Y.-J.; Zhao, J.-C.; Li, L.-J.; Liu, Z.-Q.; Li, Z.-J. J. Org. Chem. 2022, 87, 8773. |
| [38] | Chen, S.-L.; Yan, Q.-Q.; Fan, J.; Gao, Y.-J.; Yang, X.-L.; Li, L.-J.; Liu, Z.-Q.; Li, Z.-J. Green Chem. 2022, 24, 4742. |
| [39] | Zheng, X.-Y.; Shen, Q.-T.; Yin, C.-L.; Li, L.-H.; Zhong, T.-S.; Yu, C.-M. Adv. Synth. Catal. 2022, 364, 1750. |
| [40] | Chen, X.-Y.; Pei, C.-C.; Liu, B.; Li, J.-Y.; Zou, D.-P.; Wu, Y.-J.; Wu, Y.-S. Chem. Commun. 2022, 58, 8674 |
| [41] | Zhong, L.-J.; Xiong, Z.-Q.; Ouyang, X.-H.; Li, Y.; Song, R.-J.; Sun, Q.; Lu, X.; Li, J.-H. J. Am. Chem. Soc. 2022, 144, 339. |
| [42] | Sun, K.; Zhang, Y.; Tian, M.; Wang, Z.-C.; Zhao, D.-Y.; Wang, S.-L.; Tang, S.; Zhang, Z. Chem. Commun. 2022, 58, 9658. |
| [43] | Boiledieu, W.; Abreu, M. D.; Cuyamendous, C.; Lamaa, D.; Belmont, P.; Brachet, E. Chem. Commun. 2022, 58, 9206. |
| [44] | Evans, P. A.; Roseman, J. D. J. Org. Chem. 1996, 61, 2252. |
| [45] | Sibi, M. P.; Patil, K.; Rheault, T. R. Eur. J. Org. Chem. 2004, 372. |
| [46] | Cong, Z.-Q.; Miki, T.; Urakawa, O.; Nishino, H. J. Org. Chem. 2009, 74, 3978. |
| [47] | Majumdar, K. C.; Taher, A. Tetrahedron Lett. 2009, 50, 228. |
| [48] | Gao, Y.-L.; Gao, Y.; Tang, X.-D.; Peng, J.-W.; Hu, M.; Wu, W.-Q; Jiang, H.-F. Org. Lett. 2016, 18, 1158. |
| [49] | Xiang, H.-Y.; Zhao, Q.-L.; Xia, P.-J.; Xiao, J.-A.; Ye, Z.-P.; Xie, X.; Sheng, H.; Chen, X.-Q.; Yang, H. Org. Lett. 2018, 20, 1363. |
| [50] | Zhou, N.-N.; Kuang, K.-M.; Wu, M.-X.; Wu, S.-X.; Xia, Z.-Q.; Xu, Q.-K.; Zhang, M. Org. Chem. Front. 2021, 8, 4095. |
| [51] | Zhou, N.-N.; Kuang, K.-M.; Wu, M.-X.; Wu, S. -X.; Xu, Q.-K.; Xia, Z.-Q.; Zhang, M. Adv. Synth. Catal. 2021, 363, 3491. |
| [52] | Zhou, N.-N.; Wu, S.-X.; Kuang, K.-M.; Xia, Z.-Q.; Xu, Q.-K.; Zhang, M. Org. Chem. Front. 2021, 8, 6032. |
| [53] | Yu, Q.-Y.; Zhang, J.-H.; Wu, F.; Liu, X.-Q.; Wang, C.; Zhang, J.-P.; Rong, L.-C. J. Org. Chem. 2022, 87, 7136. |
| [54] | Zhou, N.-N.; Xia, Z.-Q.; Kuang, K.-M.; Xu, Q.-K.; Zhao, F.-L.; Wang, L.; Zhang, M. Org. Lett. 2022, 24, 5791. |
/
| 〈 |
|
〉 |