电化学氧化芳基端炔的硫氰化磺化反应
收稿日期: 2022-09-30
修回日期: 2022-11-24
网络出版日期: 2022-12-12
基金资助
国家自然科学基金(32171724); 江苏省自然科学基金(BK20210607)
Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes
Received date: 2022-09-30
Revised date: 2022-11-24
Online published: 2022-12-12
Supported by
National Natural Science Foundation of China(32171724); Natural Science Foundation of Jiangsu Province(BK20210607)
郑煜 , 钱沈城 , 徐鹏程 , 郑斌南 , 黄申林 . 电化学氧化芳基端炔的硫氰化磺化反应[J]. 有机化学, 2022 , 42(12) : 4275 -4281 . DOI: 10.6023/cjoc202209041
Thiocyano and sulfonyl groups as important functional groups are widely existing in natural products, agrochemicals and medicines. They are also versatile synthetic intermediates that could be converted into various functionalities. There are limited reports on the synthesis of compounds that contain these two functional groups. A simple three-component thiocyanatosulfonylation of aryl acetylenes with sodium sulfinates and NH4SCN through electrochemical oxidation to construct thiocyanated vinylsulfones has been established. The reaction employs easily accessible starting materials and features the characterization of external oxidant-free, mild reaction conditions, and high stereoselectivity. Moreover, this method enables two C—S bonds to be simultaneously formed in a one-step reaction.
Key words: alkyne; difunctionalization; electrochemistry; radical; thiocyanation; sulfonylation; green chemistry
| [1] | (a) Chinchilla, R.; Nájera, C. Chem. Rev. 2014, 114, 1783. |
| [1] | (b) Trost, B. M.; Master, J. T. Chem. Soc. Rev. 2016, 45, 2212. |
| [1] | (c) Yang, X.-H.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. ChemCatChem 2016, 8, 2429. |
| [1] | (d) Sun, K.; Wang, X.; Li, C.; Wang, H.; Li, L. Org. Chem. Front. 2020, 7, 3100. |
| [1] | (e) Li, J.; He, D.; Lin, Z.; Wu, W.; Jiang, H. Org. Chem. Front. 2021, 8, 3502. |
| [1] | (f) Xie, Y.; Huang, L.; Qi, Y.; Hu, J.; Song, L.; Feng, H. Green Chem. 2022, 24, 1978. |
| [2] | For selected reviews, see: (a) Xu, L.; Wang, F.; Chen, F.; Zhu, S.; Chu, L. Chin. J. Org. Chem. 2022, 42, 1. (in Chinese) |
| [2] | ( 徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, 1.) |
| [2] | (b) Zhang, Y.; Vessally, E. RSC Adv. 2021, 11, 33447. |
| [2] | (c) Whyte, A.; Torelli, A.; Mirabi, B.; Zhang, A.; Lautens, M. ACS Catal. 2020, 10, 11578. |
| [2] | (d) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292. |
| [2] | (e) Ren, X.; Lu, Z. Chin. J. Catal. 2019, 40, 1003. |
| [3] | Selected examples of transition metal-catalyzed difunctionalization of alkynes, see: (a) Zhan, Y.-Z.; Meng, H.; Shu, W. Chem. Sci. 2022, 13, 4930. |
| [3] | (b) Yang, L.-F.; Wang, Q.-A.; Li, J.-H. Org. Lett. 2021, 23, 6553. |
| [3] | (c) Li, X.; He, S.; Song, Q. Org. Lett. 2021, 23, 2994. |
| [3] | (d) Sun, Q.; Li, L.; Liu, L.; Yang, Y.; Zhang, Z.; Wang, Z. Sci. China: Chem. 2019, 62, 904. |
| [3] | (e) Israr, M.; Xiong, H.; Li, Y.; Bao, H. Org. Lett. 2019, 21, 7078. |
| [3] | (f) Xiang, Y.; Kuang, Y.; Wu, J. Chem.-Eur. J. 2017, 23, 6996. |
| [3] | (g) Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X. Angew. Chem., Int. Ed. 2017, 56, 13805. |
| [3] | (h) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2017, 359, 1208. |
| [3] | (i) Li, Z.; García-Domínguez, A.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 11610. |
| [4] | Selected examples of metal-free difunctionalization of alkynes, see: (a) Ma, C.; Xie, J.; Zeng, X.; Wei, Z.; Wei, Y. Org. Chem. Front. 2022, 9, 4441. |
| [4] | (b) Wu, H.; Shao, C.; Wu, D.; Jiang, L.; Yin, H.; Chen, F.-X. J. Org. Chem. 2021, 86, 5327. |
| [4] | (c) Ding, W.; Chai, J.; Wu, J.; Yoshikai, N. J. Am. Chem. Soc. 2020, 142, 8619. |
| [4] | (d) Ansari, M. Y.; Swarnkar, S.; Kumar, A. Chem. Commun. 2020, 56, 9561. |
| [4] | (e) Ansari, M. Y.; Kumar, N.; Kumar, A. Org. Lett. 2019, 21, 3931. |
| [4] | (f) Lu, L.-H.; Zhou, S.-J.; Sun, M.; Chen, J.-L.; Xia, W.; Yu, X.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 1574. |
| [4] | (g) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481. |
| [5] | Selected examples of visible light-induced difunctionalization of alkynes, see: (a) Xie, W.; Ma, P.; Zhang, Y.; Xi, L.; Qiu, S.; Huang, X.; Yang, B.; Gao, Y.; Zhang, J. Org. Lett. 2022, 24, 6099. |
| [5] | (b) Zhang, Q.; Li, X.; Zhang, W.; Wang, Y.; Pan, Y. Org. Lett. 2021, 23, 5410. |
| [5] | (c) Kumar, J.; Ahmad, A.; Rizvi, M. A.; Ganie, M. A.; Khajuria, C.; Shah, B. A. Org. Lett. 2020, 22, 5661. |
| [5] | (d) Peng, Z.; Yin, H.; Zhang, H.; Jia, T. Org. Lett. 2020, 22, 5885. |
| [5] | (e) Zhang, R.; Xu, P.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2019, 84, 12324. |
| [5] | (f) Sahoo, A. K.; Dahiya, A.; Das, B.; Behera, A.; Patel, B. K. J. Org. Chem. 2019, 84, 12324. |
| [5] | (g) Guo, L.; Song, F.; Zhu, S.; Li, H.; Chu, L. Nat. Commun. 2018, 9, 4543. |
| [5] | (h) Liu, T.; Ding, Y.; Fan, X.; Wu, J. Org. Chem. Front. 2018, 5, 3153. |
| [6] | Selected examples of electrochemical induced difunctionalization of alkynes, see: (a) Hong, Z.-W.; Li, L.; Wang, L. Org. Chem. Front. 2022, 9, 2815. |
| [6] | (b) Sharma, D.; Hussain, Y.; Sharma, M.; Chauhan, P. Green, Chem. 2022, 24, 4783. |
| [6] | (c) Hu, J.; Zeng, L.; Hu, J.; Ma, R.; Liu, X.; Jiao, Y.; He, H.; Chen, S.; Xu, Z.; Wang, H.; Lei, A. Org. Lett. 2022, 24, 289. |
| [6] | (d) Yu, M.; Wang, H.; Gao, Y.; Bu, F.; Cong, H.; Lei, A. Cell Rep. Phy. Sci. 2021, 2, 100476. |
| [6] | (e) Du, W.-B.; Wang, N.-N.; Pan, C.; Ni, S.-F.; Wen, L.-R.; Li, M.; Zhang, L.-B. Green Chem. 2021, 23, 2420. |
| [6] | (f) Zhang, X.; Lu, D.; Wang, Z. Eur. J. Org.Chem. 2021, 2021, 4284. |
| [6] | (g) Kong, X.; Yu, K.; Chen, Q.; Xu, B. Asian J. Org. Chem. 2020, 9, 1760. |
| [6] | (h) Sattler, L. E.; Hilt, G. Chem.-Eur. J. 2021, 27, 605. |
| [7] | (a) Dean, L. J.; Prinsep, M. R. Nat. Prod. Rep. 2017, 34, 1359. |
| [7] | (b) Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L. J. Angew. Chem., Int. Ed. 2015, 54, 5753. |
| [7] | (c) Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494. |
| [7] | (d) Zhang, L.; Niu, C.; Yang, X.; Qiu, H.; Yang, J.; Wen, J.; Wang, H. Chin. J. Org. Chem. 2020, 40, 1117. (in Chinese) |
| [7] | ( 张龙菲, 牛聪, 杨晓婷, 秦宏云, 杨建静, 文江伟, 王桦, 有机化学, 2022, 40, 1117.) |
| [7] | (e) Xu, Q.; Zhang, L.; Feng, G.; Jin, C. Chin. J. Org. Chem. 2019, 39, 287. (in Chinese) |
| [7] | ( 徐庆, 张连阳, 冯高峰, 金城安, 有机化学, 2019, 39, 287.) |
| [8] | (a) Chang, M.-Y.; Cheng, Y.-C. Org. Lett. 2016, 18, 1682. |
| [8] | (b) Sun, X. M.; Yu, F.; Ye, T. T.; Liang, X. M.; Ye, J. X. Chem.-Eur. J. 2011, 17, 430. |
| [8] | (c) Meadows, D. C.; Sanchez, T.; Neamati, N.; North, T. W.; Gervay-Hague, J. Bioorg. Med. Chem. 2007, 15, 1127. |
| [8] | (d) Frankel, B. A.; Bentley, M.; Kruger, R. G.; McCafferty, D. G. J. Am. Chem. Soc. 2004, 126, 3404. |
| [9] | Lu, L.-H.; Zhou, S.-J.; He, W.-B.; Xia, W.; Chen, P.; Yu, X.; Xu, X.; He, W.-M. Org. Biomol. Chem. 2018, 16, 9064. |
| [10] | Samanta, S.; Chatterjee, R.; Santra, S.; Hajra, A.; Khalymbadzha, I. A.; Zyryanov, G. V.; Majee, A. ACS Omega 2018, 3, 13081. |
| [11] | Liu, Z.; Yang, L.; Zhang, K.; Chen, W.; Yu, T.; Wang, L.; Gao, W.; Tang, B. Org. Lett. 2020, 22, 2081. |
| [12] | Wang, Y.; Tang, K.; Liu, Z.; Ning, Y. Chem. Commun. 2020, 56, 13141. |
| [13] | Zhang, M.; Zeng, X. Org. Lett. 2021, 23, 3326. |
| [14] | (a) Lu, L.; Shi, R.; Lei, A. Trends in Chem. 2022, 4, 179. |
| [14] | (b) Shi, S.-H.; Liang, Y.; Jiao, N. Chem. Rev. 2021, 121, 485. |
| [14] | (c) Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50, 7941. |
| [14] | (d) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339. |
| [14] | (e) Wiebe, A.; Gieshoff, T.; M?hle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 5594. |
| [14] | (f) Yoshida, J.-I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702. |
| [14] | (g) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. |
| [15] | (a) Vicente, D. A.; Galdino, D.; Navarro, M.; Menezes, P. H. Green Chem. 2020, 22, 5262. |
| [15] | (b) Qian, P.; Bi, M.; Su, J.; Zha, Z.; Wang, Z. J. Org. Chem. 2016, 81, 4876. |
| [15] | (c) Lu, F.; Zhang, K.; Yao, Y.; Yin, Y.; Chen, J.; Zhang, X.; Wang, Y.; Lu, L.; Gao, Z.; Lei, A. Green Chem. 2021, 23, 763. |
| [16] | Zhang, X.; Lu, D.; Wang, Z. Eur. J. Org. Chem. 2021, 2021, 4284. |
/
| 〈 |
|
〉 |