研究论文

电化学氧化芳基端炔的硫氰化磺化反应

  • 郑煜 ,
  • 钱沈城 ,
  • 徐鹏程 ,
  • 郑斌南 ,
  • 黄申林
展开
  • a 南京林业大学化学工程学院 江苏省林业资源高效加工利用协同创新中心 南京 210037
    b 林产化学与材料国际创新高地 南京 210037
    c 宁夏佰斯特医药化工有限公司 银川 750411

收稿日期: 2022-09-30

  修回日期: 2022-11-24

  网络出版日期: 2022-12-12

基金资助

国家自然科学基金(32171724); 江苏省自然科学基金(BK20210607)

Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes

  • Yu Zheng ,
  • Shencheng Qian ,
  • Pengcheng Xu ,
  • Binnan Zheng ,
  • Shenlin Huang
Expand
  • a Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037
    b International Innovation Center for Forest Chemicals and Materials, Nanjing 210037
    c Ningxia Best Pharmaceutical Chemical Co. Ltd., Yinchuan 750411

Received date: 2022-09-30

  Revised date: 2022-11-24

  Online published: 2022-12-12

Supported by

National Natural Science Foundation of China(32171724); Natural Science Foundation of Jiangsu Province(BK20210607)

摘要

硫氰基和磺酰基作为重要的官能团, 广泛存在于天然产物、农药和药物中, 同时它们作为合成中间体可以转化为其它多种官能团. 到目前为止, 合成兼具硫氰基和磺酰基这两类官能团的化合物的研究较少. 报道了一种简单的芳基端炔、亚磺酸钠和硫氰酸铵电化学氧化三组反应, 合成了一类硫氰代烯基砜类化合物. 该反应利用廉价易得的原料, 并具有无需外源氧化剂、反应条件温和及立体选择性高等特点. 此外, 该方法实现了一步反应中两个C—S键的同时构建.

本文引用格式

郑煜 , 钱沈城 , 徐鹏程 , 郑斌南 , 黄申林 . 电化学氧化芳基端炔的硫氰化磺化反应[J]. 有机化学, 2022 , 42(12) : 4275 -4281 . DOI: 10.6023/cjoc202209041

Abstract

Thiocyano and sulfonyl groups as important functional groups are widely existing in natural products, agrochemicals and medicines. They are also versatile synthetic intermediates that could be converted into various functionalities. There are limited reports on the synthesis of compounds that contain these two functional groups. A simple three-component thiocyanatosulfonylation of aryl acetylenes with sodium sulfinates and NH4SCN through electrochemical oxidation to construct thiocyanated vinylsulfones has been established. The reaction employs easily accessible starting materials and features the characterization of external oxidant-free, mild reaction conditions, and high stereoselectivity. Moreover, this method enables two C—S bonds to be simultaneously formed in a one-step reaction.

参考文献

[1]
(a) Chinchilla, R.; Nájera, C. Chem. Rev. 2014, 114, 1783.
[1]
(b) Trost, B. M.; Master, J. T. Chem. Soc. Rev. 2016, 45, 2212.
[1]
(c) Yang, X.-H.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. ChemCatChem 2016, 8, 2429.
[1]
(d) Sun, K.; Wang, X.; Li, C.; Wang, H.; Li, L. Org. Chem. Front. 2020, 7, 3100.
[1]
(e) Li, J.; He, D.; Lin, Z.; Wu, W.; Jiang, H. Org. Chem. Front. 2021, 8, 3502.
[1]
(f) Xie, Y.; Huang, L.; Qi, Y.; Hu, J.; Song, L.; Feng, H. Green Chem. 2022, 24, 1978.
[2]
For selected reviews, see: (a) Xu, L.; Wang, F.; Chen, F.; Zhu, S.; Chu, L. Chin. J. Org. Chem. 2022, 42, 1. (in Chinese)
[2]
( 徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, 1.)
[2]
(b) Zhang, Y.; Vessally, E. RSC Adv. 2021, 11, 33447.
[2]
(c) Whyte, A.; Torelli, A.; Mirabi, B.; Zhang, A.; Lautens, M. ACS Catal. 2020, 10, 11578.
[2]
(d) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292.
[2]
(e) Ren, X.; Lu, Z. Chin. J. Catal. 2019, 40, 1003.
[3]
Selected examples of transition metal-catalyzed difunctionalization of alkynes, see: (a) Zhan, Y.-Z.; Meng, H.; Shu, W. Chem. Sci. 2022, 13, 4930.
[3]
(b) Yang, L.-F.; Wang, Q.-A.; Li, J.-H. Org. Lett. 2021, 23, 6553.
[3]
(c) Li, X.; He, S.; Song, Q. Org. Lett. 2021, 23, 2994.
[3]
(d) Sun, Q.; Li, L.; Liu, L.; Yang, Y.; Zhang, Z.; Wang, Z. Sci. China: Chem. 2019, 62, 904.
[3]
(e) Israr, M.; Xiong, H.; Li, Y.; Bao, H. Org. Lett. 2019, 21, 7078.
[3]
(f) Xiang, Y.; Kuang, Y.; Wu, J. Chem.-Eur. J. 2017, 23, 6996.
[3]
(g) Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X. Angew. Chem., Int. Ed. 2017, 56, 13805.
[3]
(h) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2017, 359, 1208.
[3]
(i) Li, Z.; García-Domínguez, A.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 11610.
[4]
Selected examples of metal-free difunctionalization of alkynes, see: (a) Ma, C.; Xie, J.; Zeng, X.; Wei, Z.; Wei, Y. Org. Chem. Front. 2022, 9, 4441.
[4]
(b) Wu, H.; Shao, C.; Wu, D.; Jiang, L.; Yin, H.; Chen, F.-X. J. Org. Chem. 2021, 86, 5327.
[4]
(c) Ding, W.; Chai, J.; Wu, J.; Yoshikai, N. J. Am. Chem. Soc. 2020, 142, 8619.
[4]
(d) Ansari, M. Y.; Swarnkar, S.; Kumar, A. Chem. Commun. 2020, 56, 9561.
[4]
(e) Ansari, M. Y.; Kumar, N.; Kumar, A. Org. Lett. 2019, 21, 3931.
[4]
(f) Lu, L.-H.; Zhou, S.-J.; Sun, M.; Chen, J.-L.; Xia, W.; Yu, X.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 1574.
[4]
(g) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
[5]
Selected examples of visible light-induced difunctionalization of alkynes, see: (a) Xie, W.; Ma, P.; Zhang, Y.; Xi, L.; Qiu, S.; Huang, X.; Yang, B.; Gao, Y.; Zhang, J. Org. Lett. 2022, 24, 6099.
[5]
(b) Zhang, Q.; Li, X.; Zhang, W.; Wang, Y.; Pan, Y. Org. Lett. 2021, 23, 5410.
[5]
(c) Kumar, J.; Ahmad, A.; Rizvi, M. A.; Ganie, M. A.; Khajuria, C.; Shah, B. A. Org. Lett. 2020, 22, 5661.
[5]
(d) Peng, Z.; Yin, H.; Zhang, H.; Jia, T. Org. Lett. 2020, 22, 5885.
[5]
(e) Zhang, R.; Xu, P.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2019, 84, 12324.
[5]
(f) Sahoo, A. K.; Dahiya, A.; Das, B.; Behera, A.; Patel, B. K. J. Org. Chem. 2019, 84, 12324.
[5]
(g) Guo, L.; Song, F.; Zhu, S.; Li, H.; Chu, L. Nat. Commun. 2018, 9, 4543.
[5]
(h) Liu, T.; Ding, Y.; Fan, X.; Wu, J. Org. Chem. Front. 2018, 5, 3153.
[6]
Selected examples of electrochemical induced difunctionalization of alkynes, see: (a) Hong, Z.-W.; Li, L.; Wang, L. Org. Chem. Front. 2022, 9, 2815.
[6]
(b) Sharma, D.; Hussain, Y.; Sharma, M.; Chauhan, P. Green, Chem. 2022, 24, 4783.
[6]
(c) Hu, J.; Zeng, L.; Hu, J.; Ma, R.; Liu, X.; Jiao, Y.; He, H.; Chen, S.; Xu, Z.; Wang, H.; Lei, A. Org. Lett. 2022, 24, 289.
[6]
(d) Yu, M.; Wang, H.; Gao, Y.; Bu, F.; Cong, H.; Lei, A. Cell Rep. Phy. Sci. 2021, 2, 100476.
[6]
(e) Du, W.-B.; Wang, N.-N.; Pan, C.; Ni, S.-F.; Wen, L.-R.; Li, M.; Zhang, L.-B. Green Chem. 2021, 23, 2420.
[6]
(f) Zhang, X.; Lu, D.; Wang, Z. Eur. J. Org.Chem. 2021, 2021, 4284.
[6]
(g) Kong, X.; Yu, K.; Chen, Q.; Xu, B. Asian J. Org. Chem. 2020, 9, 1760.
[6]
(h) Sattler, L. E.; Hilt, G. Chem.-Eur. J. 2021, 27, 605.
[7]
(a) Dean, L. J.; Prinsep, M. R. Nat. Prod. Rep. 2017, 34, 1359.
[7]
(b) Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L. J. Angew. Chem., Int. Ed. 2015, 54, 5753.
[7]
(c) Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494.
[7]
(d) Zhang, L.; Niu, C.; Yang, X.; Qiu, H.; Yang, J.; Wen, J.; Wang, H. Chin. J. Org. Chem. 2020, 40, 1117. (in Chinese)
[7]
( 张龙菲, 牛聪, 杨晓婷, 秦宏云, 杨建静, 文江伟, 王桦, 有机化学, 2022, 40, 1117.)
[7]
(e) Xu, Q.; Zhang, L.; Feng, G.; Jin, C. Chin. J. Org. Chem. 2019, 39, 287. (in Chinese)
[7]
( 徐庆, 张连阳, 冯高峰, 金城安, 有机化学, 2019, 39, 287.)
[8]
(a) Chang, M.-Y.; Cheng, Y.-C. Org. Lett. 2016, 18, 1682.
[8]
(b) Sun, X. M.; Yu, F.; Ye, T. T.; Liang, X. M.; Ye, J. X. Chem.-Eur. J. 2011, 17, 430.
[8]
(c) Meadows, D. C.; Sanchez, T.; Neamati, N.; North, T. W.; Gervay-Hague, J. Bioorg. Med. Chem. 2007, 15, 1127.
[8]
(d) Frankel, B. A.; Bentley, M.; Kruger, R. G.; McCafferty, D. G. J. Am. Chem. Soc. 2004, 126, 3404.
[9]
Lu, L.-H.; Zhou, S.-J.; He, W.-B.; Xia, W.; Chen, P.; Yu, X.; Xu, X.; He, W.-M. Org. Biomol. Chem. 2018, 16, 9064.
[10]
Samanta, S.; Chatterjee, R.; Santra, S.; Hajra, A.; Khalymbadzha, I. A.; Zyryanov, G. V.; Majee, A. ACS Omega 2018, 3, 13081.
[11]
Liu, Z.; Yang, L.; Zhang, K.; Chen, W.; Yu, T.; Wang, L.; Gao, W.; Tang, B. Org. Lett. 2020, 22, 2081.
[12]
Wang, Y.; Tang, K.; Liu, Z.; Ning, Y. Chem. Commun. 2020, 56, 13141.
[13]
Zhang, M.; Zeng, X. Org. Lett. 2021, 23, 3326.
[14]
(a) Lu, L.; Shi, R.; Lei, A. Trends in Chem. 2022, 4, 179.
[14]
(b) Shi, S.-H.; Liang, Y.; Jiao, N. Chem. Rev. 2021, 121, 485.
[14]
(c) Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50, 7941.
[14]
(d) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[14]
(e) Wiebe, A.; Gieshoff, T.; M?hle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 5594.
[14]
(f) Yoshida, J.-I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
[14]
(g) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[15]
(a) Vicente, D. A.; Galdino, D.; Navarro, M.; Menezes, P. H. Green Chem. 2020, 22, 5262.
[15]
(b) Qian, P.; Bi, M.; Su, J.; Zha, Z.; Wang, Z. J. Org. Chem. 2016, 81, 4876.
[15]
(c) Lu, F.; Zhang, K.; Yao, Y.; Yin, Y.; Chen, J.; Zhang, X.; Wang, Y.; Lu, L.; Gao, Z.; Lei, A. Green Chem. 2021, 23, 763.
[16]
Zhang, X.; Lu, D.; Wang, Z. Eur. J. Org. Chem. 2021, 2021, 4284.
文章导航

/