综述与进展

离子转移反应的研究进展

  • 李落墨 ,
  • 杨小会
展开
  • 北京理工大学 前沿交叉科学研究院&化学与化工学院 医药分子科学与制剂工程工信部重点实验室 北京 100081

收稿日期: 2022-11-30

  修回日期: 2023-01-05

  网络出版日期: 2023-01-12

基金资助

国家自然科学基金(22201018); 北京市自然科学基金(2222024); 国家重点研发计划(2021YFA1401200)

Recent Advances in Ionic Transfer Reactions

  • Luomo Li ,
  • Xiaohui Yang
Expand
  • Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Advanced Research Institute of Multidisciplinary Science & School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081
* Corresponding author. E-mail:

Received date: 2022-11-30

  Revised date: 2023-01-05

  Online published: 2023-01-12

Supported by

National Natural Science Foundation of China(22201018); Beijing Natural Science Foundation(2222024); National Key Research and Development Program of China(2021YFA1401200)

摘要

近年来, 一类新颖的名为“离子转移反应”的有机化学反应受到人们的广泛关注. 这类反应拥有独特的反应机理, 可以避免易燃易爆、剧毒等不易操作试剂的使用, 为不饱和化合物的转移官能团化, 例如转移氢硅化、转移氢化、转移氢卤化和转移氢氰化等提供了新型强有力的工具. 对近年来报道的离子转移反应以及相关的反应机理进行了总结, 同时对该领域的未来发展方向进行了展望.

本文引用格式

李落墨 , 杨小会 . 离子转移反应的研究进展[J]. 有机化学, 2023 , 43(3) : 1036 -1044 . DOI: 10.6023/cjoc202211047

Abstract

In recent years, a series of novel organic reactions, named “ionic transfer reaction”, has received much attention. This kind of reaction has a characteristic mechanism and avoids the use of inflammable, explosive, highly toxic and other difficult to operate reagents. It provides a new powerful tool for transfer functionalizations of unsaturated compounds, such as transfer hydrosilylations, transfer hydrogenations, transfer hydrohalogenations, and transfer hydrocyanations. Herein, the recent progress of ionic transfer reactions and related mechanisms are summarized. Furthermore, the future developments of ionic transfer reactions are prospected.

参考文献

[1]
(a) Solomons, T. W. G.; Fryhle, C. B.; Snyder, S. A. Organic Chemistry, 12th ed., Wiley, New York, 2016.
[1]
(b) de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007.
[1]
(c) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed., Wiley-VCH, Weinheim, Germany, 2004.
[2]
(a) Zassinovich, G.; Mestroni, G. Chem. Rev. 1992, 92, 1051.
[2]
(b) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621.
[2]
(c) Zhou, X.-Y.; Wang, X.-C. Chem. Reag. 2022, 44, 1012. (in Chinese)
[2]
(周新悦, 王晓晨, 化学试剂, 2022, 44, 1012.)
[3]
(a) Fang, X.; Yu, P.; Morandi, B. Science 2016, 351, 832.
[3]
(b) Bhunia, A.; Bergander, K.; Studer, A. J. Am. Chem. Soc. 2018, 140, 16353.
[3]
(c) Bhawal, B. N.; Reisenbauer, J. C.; Ehinger, C.; Morandi, B. J. Am. Chem. Soc. 2020, 142, 10914.
[3]
(d) Long, J.; Yu, R.; Gao, J.; Fang, X. Angew. Chem., Int. Ed. 2020, 59, 6785.
[4]
Walker, J. C. L.; Oestreich, M. Synlett 2019, 30, 2216.
[5]
Oestreich, M. Angew. Chem., Int. Ed. 2016, 55, 494.
[6]
Gutsulyak, D. V.; van der Est, A.; Nikonov, G. I. Angew. Chem., Int. Ed. 2011, 50, 1384.
[7]
Simonneau, A.; Oestreich, M. Angew. Chem., Int. Ed. 2013, 52, 11905.
[8]
Simonneau, A.; Oestreich, M. Nat. Chem. 2015, 7, 816.
[9]
Millot, N.; Santini, C. C.; Fenet, B.; Basset, J. M. Eur. J. Inorg. Chem. 2002, 2002, 3328.
[10]
Farrell, J. M.; Heiden, Z. M.; Stephan, D. W. Organometallics 2011, 30, 4497.
[11]
Chatterjee, I.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 1965.
[12]
Chatterjee, I.; Qu, Z.-W.; Grimme, S.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 12158.
[13]
Chatterjee, I.; Oestreich, M. Org. Lett. 2016, 18, 2463.
[14]
Qian, D.; Zhang, J. Acc. Chem. Res. 2020, 53, 2358.
[15]
Li, L.; Kail, S.; Weber, S. M.; Hilt, G. Angew. Chem., Int. Ed. 2021, 60, 23661.
[16]
(a) Mullard, A. Nat. Rev. Drug Discovery 2016, 15, 219.
[16]
(b) Gant, T. G. J. Med. Chem. 2014, 57, 3595.
[16]
(c) Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. J. Med. Chem. 2019, 62, 5276.
[17]
Schmidt, C. Nat. Biotechnol. 2017, 35, 493.
[18]
Vang, Z. P.; Hintzsche, S. J.; Clark, J. R. Chem.-Eur. J. 2021, 27, 9988.
[19]
Walker, J. C. L.; Oestreich, M. Org. Lett. 2018, 20, 6411.
[20]
Li, L.; Hilt, G. Org. Lett. 2020, 22, 1628.
[21]
Li, L.; Hilt, G. Chem.-Eur. J. 2021, 27, 11221.
[22]
(a) Wang, Y.; Cui, C.; Yang, X. Chin. J. Org. Chem. 2021, 41, 3808. (in Chinese)
[22]
(王耀鑫, 崔晨, 杨小会, 有机化学, 2021, 41, 3808.)
[22]
(b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
[22]
(c) Smith, B. R.; Eastman, C. M.; Njardarson, J. T. J. Med. Chem. 2014, 57, 9764.
[22]
(d) Lin, R.; Amrute, A. P.; Pérez-Ramírez, J. Chem. Rev. 2017, 117, 4182.
[23]
(a) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
[23]
(b) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937.
[23]
(c) Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
[23]
(d) Ye, S.; Xiang, T.; Li, X.; Wu, J. Org. Chem. Front. 2019, 6, 2183.
[23]
(e) Juliá, F.; Constantin, T.; Leonori, D. Chem. Rev. 2022, 122, 2292.
[24]
Chen, W.; Walker, J. C. L.; Oestreich, M. J. Am. Chem. Soc. 2019, 141, 1135.
[25]
Chen, W.; Oestreich, M. Org. Lett. 2019, 21, 4531.
[26]
Xie, K.; Oestreich, M. Angew. Chem., Int. Ed. 2022, 61, e202203692.
[27]
Keess, S.; Oestreich, M. Org. Lett. 2017, 19, 1898.
[28]
Orecchia, P.; Yuan, W.; Oestreich, M. Angew. Chem., Int. Ed. 2019, 58, 3579.
[29]
Walker, J. C. L.; Oestreich, M. Angew. Chem., Int. Ed. 2019, 58, 15386.
文章导航

/