离子转移反应的研究进展
收稿日期: 2022-11-30
修回日期: 2023-01-05
网络出版日期: 2023-01-12
基金资助
国家自然科学基金(22201018); 北京市自然科学基金(2222024); 国家重点研发计划(2021YFA1401200)
Recent Advances in Ionic Transfer Reactions
Received date: 2022-11-30
Revised date: 2023-01-05
Online published: 2023-01-12
Supported by
National Natural Science Foundation of China(22201018); Beijing Natural Science Foundation(2222024); National Key Research and Development Program of China(2021YFA1401200)
李落墨 , 杨小会 . 离子转移反应的研究进展[J]. 有机化学, 2023 , 43(3) : 1036 -1044 . DOI: 10.6023/cjoc202211047
In recent years, a series of novel organic reactions, named “ionic transfer reaction”, has received much attention. This kind of reaction has a characteristic mechanism and avoids the use of inflammable, explosive, highly toxic and other difficult to operate reagents. It provides a new powerful tool for transfer functionalizations of unsaturated compounds, such as transfer hydrosilylations, transfer hydrogenations, transfer hydrohalogenations, and transfer hydrocyanations. Herein, the recent progress of ionic transfer reactions and related mechanisms are summarized. Furthermore, the future developments of ionic transfer reactions are prospected.
| [1] | (a) Solomons, T. W. G.; Fryhle, C. B.; Snyder, S. A. Organic Chemistry, 12th ed., Wiley, New York, 2016. |
| [1] | (b) de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007. |
| [1] | (c) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed., Wiley-VCH, Weinheim, Germany, 2004. |
| [2] | (a) Zassinovich, G.; Mestroni, G. Chem. Rev. 1992, 92, 1051. |
| [2] | (b) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621. |
| [2] | (c) Zhou, X.-Y.; Wang, X.-C. Chem. Reag. 2022, 44, 1012. (in Chinese) |
| [2] | (周新悦, 王晓晨, 化学试剂, 2022, 44, 1012.) |
| [3] | (a) Fang, X.; Yu, P.; Morandi, B. Science 2016, 351, 832. |
| [3] | (b) Bhunia, A.; Bergander, K.; Studer, A. J. Am. Chem. Soc. 2018, 140, 16353. |
| [3] | (c) Bhawal, B. N.; Reisenbauer, J. C.; Ehinger, C.; Morandi, B. J. Am. Chem. Soc. 2020, 142, 10914. |
| [3] | (d) Long, J.; Yu, R.; Gao, J.; Fang, X. Angew. Chem., Int. Ed. 2020, 59, 6785. |
| [4] | Walker, J. C. L.; Oestreich, M. Synlett 2019, 30, 2216. |
| [5] | Oestreich, M. Angew. Chem., Int. Ed. 2016, 55, 494. |
| [6] | Gutsulyak, D. V.; van der Est, A.; Nikonov, G. I. Angew. Chem., Int. Ed. 2011, 50, 1384. |
| [7] | Simonneau, A.; Oestreich, M. Angew. Chem., Int. Ed. 2013, 52, 11905. |
| [8] | Simonneau, A.; Oestreich, M. Nat. Chem. 2015, 7, 816. |
| [9] | Millot, N.; Santini, C. C.; Fenet, B.; Basset, J. M. Eur. J. Inorg. Chem. 2002, 2002, 3328. |
| [10] | Farrell, J. M.; Heiden, Z. M.; Stephan, D. W. Organometallics 2011, 30, 4497. |
| [11] | Chatterjee, I.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 1965. |
| [12] | Chatterjee, I.; Qu, Z.-W.; Grimme, S.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 12158. |
| [13] | Chatterjee, I.; Oestreich, M. Org. Lett. 2016, 18, 2463. |
| [14] | Qian, D.; Zhang, J. Acc. Chem. Res. 2020, 53, 2358. |
| [15] | Li, L.; Kail, S.; Weber, S. M.; Hilt, G. Angew. Chem., Int. Ed. 2021, 60, 23661. |
| [16] | (a) Mullard, A. Nat. Rev. Drug Discovery 2016, 15, 219. |
| [16] | (b) Gant, T. G. J. Med. Chem. 2014, 57, 3595. |
| [16] | (c) Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. J. Med. Chem. 2019, 62, 5276. |
| [17] | Schmidt, C. Nat. Biotechnol. 2017, 35, 493. |
| [18] | Vang, Z. P.; Hintzsche, S. J.; Clark, J. R. Chem.-Eur. J. 2021, 27, 9988. |
| [19] | Walker, J. C. L.; Oestreich, M. Org. Lett. 2018, 20, 6411. |
| [20] | Li, L.; Hilt, G. Org. Lett. 2020, 22, 1628. |
| [21] | Li, L.; Hilt, G. Chem.-Eur. J. 2021, 27, 11221. |
| [22] | (a) Wang, Y.; Cui, C.; Yang, X. Chin. J. Org. Chem. 2021, 41, 3808. (in Chinese) |
| [22] | (王耀鑫, 崔晨, 杨小会, 有机化学, 2021, 41, 3808.) |
| [22] | (b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10. |
| [22] | (c) Smith, B. R.; Eastman, C. M.; Njardarson, J. T. J. Med. Chem. 2014, 57, 9764. |
| [22] | (d) Lin, R.; Amrute, A. P.; Pérez-Ramírez, J. Chem. Rev. 2017, 117, 4182. |
| [23] | (a) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656. |
| [23] | (b) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937. |
| [23] | (c) Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062. |
| [23] | (d) Ye, S.; Xiang, T.; Li, X.; Wu, J. Org. Chem. Front. 2019, 6, 2183. |
| [23] | (e) Juliá, F.; Constantin, T.; Leonori, D. Chem. Rev. 2022, 122, 2292. |
| [24] | Chen, W.; Walker, J. C. L.; Oestreich, M. J. Am. Chem. Soc. 2019, 141, 1135. |
| [25] | Chen, W.; Oestreich, M. Org. Lett. 2019, 21, 4531. |
| [26] | Xie, K.; Oestreich, M. Angew. Chem., Int. Ed. 2022, 61, e202203692. |
| [27] | Keess, S.; Oestreich, M. Org. Lett. 2017, 19, 1898. |
| [28] | Orecchia, P.; Yuan, W.; Oestreich, M. Angew. Chem., Int. Ed. 2019, 58, 3579. |
| [29] | Walker, J. C. L.; Oestreich, M. Angew. Chem., Int. Ed. 2019, 58, 15386. |
/
| 〈 |
|
〉 |