锆、钛介导的烯烃、炔烃硼氢化
收稿日期: 2022-12-16
修回日期: 2023-01-09
网络出版日期: 2023-01-18
基金资助
国家自然科学基金(22271295); 中国科学院兰州化学物理研究所青年科技工作者协同创新联盟合作基金(HZJJ21-01)
Zirconium and Titanium Mediated Hydroboration of Alkenes and Alkynes
Received date: 2022-12-16
Revised date: 2023-01-09
Online published: 2023-01-18
Supported by
National Natural Science Foundation of China(22271295); Cooperation Foundation of Lanzhou Institute of Chemical Physics for Young Scholars(HZJJ21-01)
李思达 , 舒兴中 , 吴立朋 . 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023 , 43(5) : 1751 -1760 . DOI: 10.6023/cjoc202212022
The transition metal-catalyzed hydroboration of alkenes and alkynes is one of the most efficient way for the production of boronate esters. This type of reaction is 100% atom economic, the starting material is readily available, and the products are diverse. It is noticed that most of the known catalytic systems are based on late-transition-metals such as Rh, Ir, Pd, Pt, Co, Fe and Cu. The use of early-transition-metals of zirconium and titanium, on the other hand, is very scarce. In this short review, the development of application in zirconium and titanium mediated hydroboration of alkene and alkyne is summarized, and the research trends of this area are also discussed.
Key words: zirconium; titanium; alkenes; alkynes; hydroboration
| [1] | (a) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864. |
| [1] | (b) Liu, Q.; Tian, B.; Tian, P.; Tong, X. F.; Lin, G.-Q. Chin. J. Org. Chem. 2015, 35, 1. (in Chinese) |
| [1] | (刘强, 田兵, 田平, 童晓峰, 林国强, 有机化学, 2015, 35, 1.) |
| [1] | (c) Cheng, Q. Q.; Xu, H.; Zhu, S. F.; Zhou, Q. L. Acta Chim. Sinica 2015, 73, 326. (in Chinese) |
| [1] | (程清卿, 许唤, 朱守非, 周其林, 化学学报, 2015, 73, 326.) |
| [1] | (d) Liu, Y.; Zhang, W. Chin. J. Org. Chem. 2016, 36, 2249. (in Chinese) |
| [1] | (刘媛媛, 张万斌, 有机化学, 2016, 36, 2249.) |
| [2] | (a) Negishi, E.-I.; Racherla, U. S. Heteroat. Chem. 1992, 3, 201. |
| [2] | (b) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075. |
| [2] | (c) Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15. |
| [2] | (d) Guo, J.; Cheng, Z.; Chen, J.; Chen, X.; Lu, Z. Acc. Chem. Res. 2021, 54, 2701. |
| [2] | (e) Lu, H. X; Li, B. J. Chin. J. Org. Chem. 2022, 42, 3167. (in Chinese) |
| [2] | (陆候祥, 李必杰, 有机化学, 2022, 42, 3167.) |
| [3] | M?nnig, D.; N?th, H. Angew. Chem., Int. Ed. 1985, 24, 878. |
| [4] | (a) Crudden, C. M.; Hleba, Y. B.; Chen, A. C. J. Am. Chem. Soc. 2004, 126, 9200. |
| [4] | (b) Huang, J.-Z.; Yan, W.-X.; Tan, C.-W.; Wu, W.-Q.; Jiang, H.-F. Chem. Commun. 2018, 54, 1770. |
| [4] | (c) Gunanathan, C.; H?lscher, M.; Pan, F.; Leitner, W. J. Am. Chem. Soc. 2012, 134, 14349. |
| [4] | (d) Xu, S.-M.; Zhang, Y.-Z.; Li, B.; Liu, S.-Y. J. Am. Chem. Soc. 2016, 138, 14566. |
| [4] | (e) Sun, Y.; Guan, R.; Liu, Z.-H.; Wang, Y.-M. Chin. J. Org. Chem. 2020, 40, 899. (in Chinese) |
| [4] | (孙越, 关瑞, 刘兆洪, 王也铭, 有机化学, 2020, 40, 899.) |
| [4] | (f) Huang, M.-Y.; Zhu, S.-F. Chem. J. Chin. Univ. 2020, 41, 1426. (in Chinese) |
| [4] | (黄明耀, 朱守非, 高等学校化学学报, 2020, 41, 1426.) |
| [5] | (a) Marek, I. Titanium and Zirconium in Organic Synthesis, Wiley-VCH, Weinheim, 2002. |
| [5] | (b) Yan, X.; Xi, C. Coord. Chem. Rev. 2016, 308, 22. |
| [5] | (c) Man?en, M.; Schafer, L. L. Chem. Soc. Rev. 2020, 49, 6947. |
| [5] | (d) Rosenthal, U. Chem. Soc. Rev. 2020, 49, 2119. |
| [5] | (e) Wu, X.; Chang, Y.; Lin, S. Chem 2022, 8, 1805. |
| [6] | Cole, T. E.; Quintanilla, R.; Rodewald, S. Organometallics 1991, 10, 3777. |
| [7] | Cole, T. E.; Quintanilla, R. Tetrahedron 1995, 51, 4297. |
| [8] | Pereira, S.; Srebnik, M. Organometallics 1995, 14, 3127. |
| [9] | Wang, Y. D.; Kimball, G.; Prashada, A. S.; Wang, Y. Tetrahedron Lett. 2005, 46, 8777. |
| [10] | Sakae, R.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2013, 42, 1128. |
| [11] | Spencer, J. A.; Jamieson, C.; Talbot, E. P. A. Org. Lett. 2017, 19, 3891. |
| [12] | Birepinte, M.; Liautard, V.; Chabaud, L.; Pucheault, M. Org. Lett. 2020, 22, 2838. |
| [13] | Pereira, S.; Srebnik, M. J. Am. Chem. Soc. 1996, 118, 909. |
| [14] | Shi, X. N.; Li, S. D.; Wu, L. P. Angew. Chem., Int. Ed. 2019, 58, 16167. |
| [15] | Wang, X. J.; Cui, X.; Li, S. D.; Wang, Y.; Jiao, H.-J.; Xia, C. G.; Wu, L. P. Angew. Chem., Int. Ed. 2020, 59, 13608. |
| [16] | (a) Isagawa, K.; Sano, H.; Hattori, M.; Otsuji, Y. Chem. Lett. 1979, 8, 1069. |
| [16] | (b) Lee, H. S.; Isagawa, K.; Toyoda, H.; Otsuji, Y. Chem. Lett. 1984, 13, 673. |
| [16] | (c) Lee, H. S.; Isagawa, K.; Otsuji, Y. Chem. Lett. 1984, 13, 363. |
| [17] | Burgess, K.; Donk, W. A. V. D. Organometallics 1994, 13, 3616. |
| [18] | Hartwig, J. F.; He, X. M. J. Am. Chem. Soc. 1996, 118, 1696. |
| [19] | Hartwig, J. F.; Muhoro, C. N. Organometallics 2000, 19, 30. |
| [20] | (a) Pender, M. J.; Wideman, T.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 1998, 120, 9108. |
| [20] | (b) Pender, M. J.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2001, 123, 12222. |
| [21] | Khusainova, L. I.; Khafizova, L. O.; Tyumkina, T. V.; Ryazanov, K. S.; Dzhemilev, U. M. J. Organomet. Chem. 2017, 832, 12. |
| [22] | Motry, D. H.; Smith, M. R. J. Am. Chem. Soc. 1995, 117, 6615. |
| [23] | Motry, D. H.; Brazil, A. G.; Smith, M. R. J. Am. Chem. Soc. 1997, 119, 2743. |
| [24] | Khusainova, L. I.; Khafizova, L. O.; Ryazanov, K. S.; Tyumkina, T. V.; Dzhemilev, U. M. J. Organomet. Chem. 2019, 898, 120858. |
| [25] | Bhattacharjee, J.; Harinath, A.; Bano, K.; Panda, T. K. ACS Omega 2020, 5, 1595. |
| [26] | (a) Zhang, T. X.; Zhang, Y.; Zhang, W. X.; Luo, M. M. Adv. Synth. Catal. 2013, 355, 2775. |
| [26] | (b) Fortier, S.; Gomez-Torres, A. Chem. Commun. 2021, 57, 10292. |
| [26] | (c) Wu, Y.; Zhao, T.; Rong, J.; Rao, Y.; Zhou, M.; Yin, B.; Ni, X.; Osuka, A.; Xu, L.; Song, J. Angew. Chem., Int. Ed. 2022, 61, e202201327. |
| [26] | (d) Hilche, T.; Younas, S. L.; Gans?uer, A.; Streuff, J. ChemCatChem 2022, 14, e202200530. |
| [27] | (a) Iwamoto, H.; Kubota, K.; Ito, H. Chem. Commun. 2016, 52, 5916. |
| [27] | (b) Peng, J.; Docherty, J. H.; Dominey, A. P.; Thomas, S. P. Chem. Commun. 2017, 53, 4726. |
| [27] | (c) Chen, J.; Shen, X.; Lu, Z. Angew. Chem., Int. Ed. 2021, 60, 690. |
| [28] | (a) Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260. |
| [28] | (b) Mas-Rosello, J.; Herraiz, A. G.; Audic, B.; Laverny, A.; Cramer, N. Angew. Chem., Int. Ed. 2021, 60, 13198. |
/
| 〈 |
|
〉 |