Ir(III)催化新型三组分串联三氟乙氧基化反应并一锅法构建复杂酰胺化合物
收稿日期: 2022-10-27
修回日期: 2022-12-30
网络出版日期: 2023-02-07
基金资助
四川省科技计划(2021YFG0111); 国家自然科学基金(22107082); 四川省中央引导地方科技发展专项(2021ZYD0058)
Ir(III)-Catalyzed Novel Three-Component Cascade Trifluoroethoxylation and One-Pot Method to Construct Complex Amide Compounds
Received date: 2022-10-27
Revised date: 2022-12-30
Online published: 2023-02-07
Supported by
Sichuan Science and Technology Program(2021YFG0111); National Natural Science Foundation of China(22107082); Sichuan Science and Technology Development under the Central Government(2021ZYD0058)
曾成富 , 何媛 , 李清 , 董琳 . Ir(III)催化新型三组分串联三氟乙氧基化反应并一锅法构建复杂酰胺化合物[J]. 有机化学, 2023 , 43(3) : 1115 -1123 . DOI: 10.6023/cjoc202210033
Ir(III)-catalyzed three-component cascade reaction to construct unique trifluoroethoxylation amide compounds has been developed, meanwhile the fluorinated compounds could continue to react with alcohols to prepare complex spiro isoindolinone derivatives in one-pot. The highly efficient approaches produce various amide compounds by condition- controlled.
| [1] | (a) Christie, R. J.; Fleming, R.; Bezabeh, B.; Woods, R.; Mao, S.; Harper, J.; Joseph, A.; Wang, Q.; Xu, Z. Q.; Wu, H.; Gao, C.; Dimasi, N. J. Controlled Release 2015, 220, 660. |
| [1] | (b) Li, T.; Takeoka, S. Int. J. Nanomed. 2013, 8, 3855. |
| [1] | (c) Gaisina, I. N.; Gallier, F.; Ougolkov, A. V.; Kim, K. H.; Kurome, T.; Guo, S.; Holzle, D.; Luchini, D. N.; Blond, S. Y.; Billadeau, D. D.; Kozikowski, A. P. J. Med. Chem. 2009, 52, 1853. |
| [1] | (d) Oz, Y.; Sanyal, A. Chem. Rec. 2018, 18, 570. |
| [2] | (a) Manoharan, R.; Jeganmohan, M. Asian J. Org. Chem. 2019, 8, 1949. |
| [2] | (b) Liu, S. L.; Shi, Y.; Xue, C.; Zhang, L.; Zhou, L.; Song, M. P. Eur. J. Org. Chem. 2021, 5862. |
| [3] | (a) He, Q.; Yamaguchi, T.; Chatani, N. Org. Lett. 2017, 19, 4544. |
| [3] | (b) Tamizmani, M.; Gouranga, N.; Jeganmohan, M. ChemistrySelect 2019, 4, 2976. |
| [3] | (c) Pati, B. V.; Sagara, P. S.; Ghosh, A.; Mohanty, S. R.; Ravikumar, P. C. J. Org. Chem. 2021, 86, 6551. |
| [3] | (d) Ramesh, B.; Tamizmani, M.; Jeganmohan, M. J. Org. Chem. 2019, 84, 4058. |
| [3] | (e) Ghosh, S.; Khandelia, T.; Patel, B. K. Org. Lett. 2021, 23, 7370. |
| [3] | (f) Zhou, Y.; Liang, H.; Sheng, Y. G.; Wang, S. L.; Gao, Y.; Zhan, L. L.; Zheng, Z. L.; Yang, M. J.; Liang, G.; Zhou, J. M.; Deng, J.; Song, Z. Q. J. Org. Chem. 2020, 85, 9230. |
| [3] | (g) Shinde, V. N.; Rangan, K.; Kumar, D.; Kumar, A. J. Org. Chem. 2021, 86, 2328. |
| [3] | (h) Yakkala, P. A.; Giri, D.; Chaudhary, B.; Auti, P.; Sharma, S. Org. Chem. Front. 2019, 6, 2441. |
| [4] | (a) Lv, N. N.; Liu, Y.; Xiong, C. H.; Liu, Z. X.; Zhang, Y. H. Org. Lett. 2017, 19, 4640. |
| [4] | (b) Devkota, S.; Lee, H. J.; Kim, S. H.; Lee, Y. R. Adv. Synth. Catal. 2019, 361, 5587. |
| [4] | (c) Sherikar, M. S.; Prabhu, K. R. Org. Lett. 2019, 21, 4525. |
| [4] | (d) Sharma, K.; Neog, K.; Sharmaa, A.; Gogoi, P. Org. Biomol. Chem. 2021, 19, 6256. |
| [4] | (e) Laru, S.; BhattacharJee, S.; Singsardar, M.; Samanta, S.; Hajra, A. J. Org. Chem. 2021, 86, 2784. |
| [4] | (f) Liu, S. L.; Ye, C.; Wang, X. Org. Biomol. Chem. 2022, 20, 4837. |
| [5] | Wan, J. P.; Gan, L.; Liu, Y. Y. Org. Biomol. Chem. 2017, 15, 9031. |
| [6] | (a) Chen, Z.; Jin, S. N.; Jiang, W. Y.; Zhu, F. M.; Chen, Y. Q.; Zhao, Y. W. J. Org. Chem. 2020, 85, 11006. |
| [6] | (b) Zhang, Y.; Zhu, H. Q.; Huang, Y. T.; Hu, Q.; He, Y.; Wen, Y. H.; Zhu, G. G. Org. Lett. 2019, 21, 1273. |
| [6] | (c) Hoang, G. L.; Zoll, A. J.; Ellma, J. A. Org. Lett. 2019, 21, 3886. |
| [6] | (d) Jiang, L. Q.; Jin, W. F.; Hu, W. H. ACS Catal. 2016, 6, 6146; |
| [6] | (e) Yang, Z.; Lin, X.; Wang, L. H.; Cui, X. L. Org. Chem. Front. 2017, 4, 2179. |
| [6] | (f) Huang, J. R.; Song, Q.; Zhu, Y. Q.; Qin, L.; Qian, Z. Y.; Dong, L. Chem.-Eur. J. 2014, 20, 16882. |
| [6] | (g) Yang, W.; Wang, J.; Wang, H.; Li, L.; Guan, Y.; Xu, X.; Yu, D. Org. Biomol. Chem. 2018, 16, 6865. |
| [7] | (a) Zhu, H.; Zhuang, R.; Zheng, W.; Fu, L.; Zha, Y.; Tu, L.; Chai, Y.; Zeng, L.; Zhang, C.; Zhang, J. Tetrahedron 2019, 75, 3108. |
| [7] | (b) Lin, H.; Dong, L. Org. Lett. 2016, 18, 5524. |
| [7] | (c) Mei, R.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6, 793. |
| [7] | (d) Huang, Y.; Lyu, X.; Song, H.; Wang, Q. Adv. Synth. Catal. 2019, 361, 5272. |
| [7] | (e) Zhang, G. T.; Dong, L. Asian J. Org. Chem. 2017, 6, 812; |
| [7] | (f) Li, B.; DevaraJ, K.; Darcel, C.; Dixneuf, P. H. Green Chem. 2012, 14, 2706. |
| [7] | (g) He, Y.; Zheng, T.; Huang, Y. H.; Dong, L. Org. Biomol. Chem. 2021, 19, 4937. |
| [8] | (a) Yang, Z.; Jie, L.; Yao, Z.; Yang, Z.; Cui, X. Adv. Synth. Catal. 2019, 361, 214. |
| [8] | (b) Kumar, G. S.; Khot, N. P.; Kapur, M. Adv. Synth. Catal. 2019, 361, 73. |
| [8] | (c) He, Y.; Liao, X. Z.; Dong, L.; Chen, F. E. Org. Biomol. Chem. 2021, 19, 561. |
| [9] | Liu, J.; Yang, Z.; Jiang, J.; Zeng, Q.; Zheng, L.; Liu, Z. Q. Org. Lett. 2021, 23, 5927. |
| [10] | For more details, please see the Supporting Information. |
| [11] | (a) Jambu, S.; Sivasakthikumaran, R.; Jeganmohan, M. Org. Lett. 2019, 21, 1320. |
| [11] | (b) Sheng, Y.; Gao, Y.; Duan, B.; Lv, M.; Chen, Y.; Yang, M.; Zhou, J.; Liang, G.; Song, Z. Adv. Synth. Catal. 2022, 364, 307. |
| [11] | (c) BanJare, S. K.; Nanda, T.; Ravikumar, P. C. Org. Lett. 2019, 21, 8138. |
| [11] | (d) Peng, J.; Li, C.; Khamrakulov, M.; Wang, J.; Liu, H. Org. Lett. 2020, 22, 1535. |
/
| 〈 |
|
〉 |