研究论文

Ir(III)催化新型三组分串联三氟乙氧基化反应并一锅法构建复杂酰胺化合物

  • 曾成富 ,
  • 何媛 ,
  • 李清 ,
  • 董琳
展开
  • a 四川师范大学化学与材料科学学院 成都 610066
    b 四川大学华西药学院 成都 610041

收稿日期: 2022-10-27

  修回日期: 2022-12-30

  网络出版日期: 2023-02-07

基金资助

四川省科技计划(2021YFG0111); 国家自然科学基金(22107082); 四川省中央引导地方科技发展专项(2021ZYD0058)

Ir(III)-Catalyzed Novel Three-Component Cascade Trifluoroethoxylation and One-Pot Method to Construct Complex Amide Compounds

  • Chengfu Zeng ,
  • Yuan He ,
  • Qing Li ,
  • Lin Dong
Expand
  • a College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066
    b West China School of Pharmacy, Sichuan University, Chengdu 610041
* Corresponding authors. E-mail: ;

Received date: 2022-10-27

  Revised date: 2022-12-30

  Online published: 2023-02-07

Supported by

Sichuan Science and Technology Program(2021YFG0111); National Natural Science Foundation of China(22107082); Sichuan Science and Technology Development under the Central Government(2021ZYD0058)

摘要

开发了Ir(III)催化的三组分串联反应来构建独特的三氟乙氧基酰胺化合物, 同时氟化物可以继续与醇反应制备复杂的螺旋异多酰胺酮衍生物; 也可通过一锅法直接制备螺旋异多酰胺酮衍生物. 通过条件控制高效地生成各种酰胺化合物.

本文引用格式

曾成富 , 何媛 , 李清 , 董琳 . Ir(III)催化新型三组分串联三氟乙氧基化反应并一锅法构建复杂酰胺化合物[J]. 有机化学, 2023 , 43(3) : 1115 -1123 . DOI: 10.6023/cjoc202210033

Abstract

Ir(III)-catalyzed three-component cascade reaction to construct unique trifluoroethoxylation amide compounds has been developed, meanwhile the fluorinated compounds could continue to react with alcohols to prepare complex spiro isoindolinone derivatives in one-pot. The highly efficient approaches produce various amide compounds by condition- controlled.

参考文献

[1]
(a) Christie, R. J.; Fleming, R.; Bezabeh, B.; Woods, R.; Mao, S.; Harper, J.; Joseph, A.; Wang, Q.; Xu, Z. Q.; Wu, H.; Gao, C.; Dimasi, N. J. Controlled Release 2015, 220, 660.
[1]
(b) Li, T.; Takeoka, S. Int. J. Nanomed. 2013, 8, 3855.
[1]
(c) Gaisina, I. N.; Gallier, F.; Ougolkov, A. V.; Kim, K. H.; Kurome, T.; Guo, S.; Holzle, D.; Luchini, D. N.; Blond, S. Y.; Billadeau, D. D.; Kozikowski, A. P. J. Med. Chem. 2009, 52, 1853.
[1]
(d) Oz, Y.; Sanyal, A. Chem. Rec. 2018, 18, 570.
[2]
(a) Manoharan, R.; Jeganmohan, M. Asian J. Org. Chem. 2019, 8, 1949.
[2]
(b) Liu, S. L.; Shi, Y.; Xue, C.; Zhang, L.; Zhou, L.; Song, M. P. Eur. J. Org. Chem. 2021, 5862.
[3]
(a) He, Q.; Yamaguchi, T.; Chatani, N. Org. Lett. 2017, 19, 4544.
[3]
(b) Tamizmani, M.; Gouranga, N.; Jeganmohan, M. ChemistrySelect 2019, 4, 2976.
[3]
(c) Pati, B. V.; Sagara, P. S.; Ghosh, A.; Mohanty, S. R.; Ravikumar, P. C. J. Org. Chem. 2021, 86, 6551.
[3]
(d) Ramesh, B.; Tamizmani, M.; Jeganmohan, M. J. Org. Chem. 2019, 84, 4058.
[3]
(e) Ghosh, S.; Khandelia, T.; Patel, B. K. Org. Lett. 2021, 23, 7370.
[3]
(f) Zhou, Y.; Liang, H.; Sheng, Y. G.; Wang, S. L.; Gao, Y.; Zhan, L. L.; Zheng, Z. L.; Yang, M. J.; Liang, G.; Zhou, J. M.; Deng, J.; Song, Z. Q. J. Org. Chem. 2020, 85, 9230.
[3]
(g) Shinde, V. N.; Rangan, K.; Kumar, D.; Kumar, A. J. Org. Chem. 2021, 86, 2328.
[3]
(h) Yakkala, P. A.; Giri, D.; Chaudhary, B.; Auti, P.; Sharma, S. Org. Chem. Front. 2019, 6, 2441.
[4]
(a) Lv, N. N.; Liu, Y.; Xiong, C. H.; Liu, Z. X.; Zhang, Y. H. Org. Lett. 2017, 19, 4640.
[4]
(b) Devkota, S.; Lee, H. J.; Kim, S. H.; Lee, Y. R. Adv. Synth. Catal. 2019, 361, 5587.
[4]
(c) Sherikar, M. S.; Prabhu, K. R. Org. Lett. 2019, 21, 4525.
[4]
(d) Sharma, K.; Neog, K.; Sharmaa, A.; Gogoi, P. Org. Biomol. Chem. 2021, 19, 6256.
[4]
(e) Laru, S.; BhattacharJee, S.; Singsardar, M.; Samanta, S.; Hajra, A. J. Org. Chem. 2021, 86, 2784.
[4]
(f) Liu, S. L.; Ye, C.; Wang, X. Org. Biomol. Chem. 2022, 20, 4837.
[5]
Wan, J. P.; Gan, L.; Liu, Y. Y. Org. Biomol. Chem. 2017, 15, 9031.
[6]
(a) Chen, Z.; Jin, S. N.; Jiang, W. Y.; Zhu, F. M.; Chen, Y. Q.; Zhao, Y. W. J. Org. Chem. 2020, 85, 11006.
[6]
(b) Zhang, Y.; Zhu, H. Q.; Huang, Y. T.; Hu, Q.; He, Y.; Wen, Y. H.; Zhu, G. G. Org. Lett. 2019, 21, 1273.
[6]
(c) Hoang, G. L.; Zoll, A. J.; Ellma, J. A. Org. Lett. 2019, 21, 3886.
[6]
(d) Jiang, L. Q.; Jin, W. F.; Hu, W. H. ACS Catal. 2016, 6, 6146;
[6]
(e) Yang, Z.; Lin, X.; Wang, L. H.; Cui, X. L. Org. Chem. Front. 2017, 4, 2179.
[6]
(f) Huang, J. R.; Song, Q.; Zhu, Y. Q.; Qin, L.; Qian, Z. Y.; Dong, L. Chem.-Eur. J. 2014, 20, 16882.
[6]
(g) Yang, W.; Wang, J.; Wang, H.; Li, L.; Guan, Y.; Xu, X.; Yu, D. Org. Biomol. Chem. 2018, 16, 6865.
[7]
(a) Zhu, H.; Zhuang, R.; Zheng, W.; Fu, L.; Zha, Y.; Tu, L.; Chai, Y.; Zeng, L.; Zhang, C.; Zhang, J. Tetrahedron 2019, 75, 3108.
[7]
(b) Lin, H.; Dong, L. Org. Lett. 2016, 18, 5524.
[7]
(c) Mei, R.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6, 793.
[7]
(d) Huang, Y.; Lyu, X.; Song, H.; Wang, Q. Adv. Synth. Catal. 2019, 361, 5272.
[7]
(e) Zhang, G. T.; Dong, L. Asian J. Org. Chem. 2017, 6, 812;
[7]
(f) Li, B.; DevaraJ, K.; Darcel, C.; Dixneuf, P. H. Green Chem. 2012, 14, 2706.
[7]
(g) He, Y.; Zheng, T.; Huang, Y. H.; Dong, L. Org. Biomol. Chem. 2021, 19, 4937.
[8]
(a) Yang, Z.; Jie, L.; Yao, Z.; Yang, Z.; Cui, X. Adv. Synth. Catal. 2019, 361, 214.
[8]
(b) Kumar, G. S.; Khot, N. P.; Kapur, M. Adv. Synth. Catal. 2019, 361, 73.
[8]
(c) He, Y.; Liao, X. Z.; Dong, L.; Chen, F. E. Org. Biomol. Chem. 2021, 19, 561.
[9]
Liu, J.; Yang, Z.; Jiang, J.; Zeng, Q.; Zheng, L.; Liu, Z. Q. Org. Lett. 2021, 23, 5927.
[10]
For more details, please see the Supporting Information.
[11]
(a) Jambu, S.; Sivasakthikumaran, R.; Jeganmohan, M. Org. Lett. 2019, 21, 1320.
[11]
(b) Sheng, Y.; Gao, Y.; Duan, B.; Lv, M.; Chen, Y.; Yang, M.; Zhou, J.; Liang, G.; Song, Z. Adv. Synth. Catal. 2022, 364, 307.
[11]
(c) BanJare, S. K.; Nanda, T.; Ravikumar, P. C. Org. Lett. 2019, 21, 8138.
[11]
(d) Peng, J.; Li, C.; Khamrakulov, M.; Wang, J.; Liu, H. Org. Lett. 2020, 22, 1535.
文章导航

/